
Model-based Reasoning and the Control of Process

Plants

Heikki Välisuo

1994

Keywords: model-based reasoning, discrete-event control, verification, val-
idation, constraint logic programming, industrial process plants, qualitative
modelling, qsim

Reformatted 2018: I found the tex-files of my dissertation (the last but
version of it) from almost 25 years back. I could not resist the temptation
to try to convert it to html with latexml. It worked OK. Except the figures,
which I had to scan from an print, because the files were lost from the backup.

Also small parts of the text had disappeared. I tried to find the errors
and fill in the missing text, but there may still be sentences breaking in the
middle.

If the equations do not seem nice on your browser, please try the the
pdf-version

1



Abstract

In addition to stabilizing feedback control, safe and economic op-
eration of industrial process plants requires discrete-event type logic
control, for example automatic control sequences, interlocking and pro-
tections. A lot of complex routine reasoning is involved in the design
and verification & validation (V&V) of such automatics. Similar rea-
soning is required in action planning and fault diagnosis during plant
operation. Much of the required reasoning is so straightforward that it
could be accomplished by a computer if only there were plant models
which allow versatile mechanised problem solving. Such plant models
and related inference algorithms are the main subject of this report.

Applying model-based reasoning in the design and V&V of plant
automatics and in action planning during plant operation is discussed.
A prototype tool called ISIR (interval simulation and reasoning) for
model-based reasoning is presented. The approach is based on the prin-
ciples of QSIM, an algorithm for qualitative simulation, and it is im-
plemented in constraint logic programming language CLP(R). ISIR
is applied to the verification and synthesis of a simple discrete-event
control strategy of a continuous process, to a power plant feed-water
system and to various standard examples from the qualitative simula-
tion literature.

The emphasis of the report is on presenting the principles of the
approach, and on demonstrating its potential applications. Because
constraint logic programming and the programming techniques devel-
oped in this work may be utilized as such programming examples and
most of the ISIR-algorithm are discussed in detail. The results are well-
defined principles, a prototype implementation, some demonstrations
and ideas for the specification of a general-purpose tool.
Keywords: process plant control, discrete-event control, qualitative
modelling, qsim, constraint logic programming, deep knowledge.

2



Acknowledgements
I want to thank my supervisor Paavo Uronen for his efficient support in

getting this work finished.
I want to acknowledge the staff of OECD Halden Reactor Project in

Halden, Norway for fruitful co-operation. Especially I want to thank Terje
Sivertsen for his interest and valuable help.

The research activities in the Electrical Engineering Laboratory of the
Technical Research Centre of Finland (from the beginning of 1994 VTT Au-
tomation) had a significant impact on the direction of my work. I want to
thank the staff for giving me such a course which I am still happy with. I
also want to thank everybody in VTT Automation for the relaxed but also
goal-oriented atmosphere.

I want to thank Dr. Kuipers and his colleagues for providing me the
QSIM-algorithm and all the advice on using it.

I want to thank all those who made it possible for me to use CLP(R).
Especially I want to thank Roland Yap for valuable help in solving my con-
straint logic programming problems.

I want to thank Dr. Sandro Bologna from ENEA, Italy for his encouraging
interest and the inspiring discussions we have had.

I want to thank Heikki Tuominen for providing me the understanding on
mathematical logic and logic programming when I was starting this work.

I want to thank OECD Halden Reactor Project, Finnish Ministry of Trade
and Industry and Imatran Voima foundation for the funding, which made this
work possible.

My wife Maija and my daughters Annastiina and Ilona deserve special
praise for patiently letting me work also late in the evenings as even now
when writing these lines.

3



Contents

1 INTRODUCTION 5
1.1 CONTENTS OF THIS REPORT . . . . . . . . . . . . . . . . 7
1.2 CONTROLLING PROCESS PLANTS . . . . . . . . . . . . . 8
1.3 DISCRETE-EVENT CONTROL . . . . . . . . . . . . . . . . 10

1.3.1 Designing discrete-event control . . . . . . . . . . . . . 11
1.4 SOFTWARE ENGINEERING . . . . . . . . . . . . . . . . . 13
1.5 KNOWLEDGE-BASED SYSTEMS . . . . . . . . . . . . . . 14
1.6 COMPUTER-AIDED DESIGN AND DECISION MAKING . 15

1.6.1 Decision support . . . . . . . . . . . . . . . . . . . . . 16

2 CONTROLLING DYNAMIC SYSTEMS 18
2.1 CHANGING REQUIREMENTS ON PLANT CONTROL . . 18
2.2 METHODS FOR ANALYSIS AND DESIGN OF DYNAMIC

SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 QUALITATIVE REASONING . . . . . . . . . . . . . . . . . 22

2.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 REPRESENTING PLANT KNOWLEDGE . . . . . . . . . . 24

2.4.1 Representing plant state . . . . . . . . . . . . . . . . . 24
2.4.2 Representing dynamic behaviour . . . . . . . . . . . . 27
2.4.3 Behaviour of a simple dynamic system . . . . . . . . . 30

3 CONSTRAINT LOGIC PROGRAMMING 32
3.1 SEMANTICS OF THE LANGUAGE . . . . . . . . . . . . . 33
3.2 SOME CORRECTNESS CHECKS OF CONSTRAINT LOGIC

PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 REACHABILITY GRAPH OF A DISCRETE-EVENT SYS-

TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Correctness proof of the reachability graph generation 46

3.4 APPLYING CONSTRAINT EQUATIONS . . . . . . . . . . 48
3.4.1 Structural reasoning . . . . . . . . . . . . . . . . . . . 49
3.4.2 Solving systems of nonlinear equations . . . . . . . . . 52

3.5 FREEZING UNINSTANTIATED CONSTRAINTS . . . . . . 53
3.6 SOLVING INTERVAL CONSTRAINT PROBLEMS . . . . . 57
3.7 CONSTRAINED OPTIMIZATION . . . . . . . . . . . . . . . 60

3.7.1 Proof of the constrained optimization . . . . . . . . . 63

4



4 THE ISIR-ALGORITHM 66
4.1 ISIR-ALGORITHM IN SHORT . . . . . . . . . . . . . . . . . 67
4.2 DISCRETE-EVENT CONTROL OF A CONTINUOUS-TIME

PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Analysis of the reachability graph . . . . . . . . . . . 80
4.2.2 Synthesis of a control sequence . . . . . . . . . . . . . 81
4.2.3 Control requirements specified with a state automaton 86
4.2.4 Proportional control of the tank level . . . . . . . . . 86

4.3 SUBTASKS IN MODEL-BASED REASONING . . . . . . . 93
4.3.1 Consistent states . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 Consistent change of continuous functions . . . . . . . 98
4.3.3 Consistent state transitions . . . . . . . . . . . . . . . 102
4.3.4 Consistent behaviours . . . . . . . . . . . . . . . . . . 106
4.3.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 HIGHER ORDER DERIVATIVES . . . . . . . . . . . . . . . 109
4.5 ADDITIONAL FEATURES . . . . . . . . . . . . . . . . . . . 112

4.5.1 Quantitative integration . . . . . . . . . . . . . . . . . 112
4.5.2 Support for the modelling of large systems . . . . . . . 122
4.5.3 Support for the modelling of automatics . . . . . . . . 127

4.6 CHARACTERISTICS OF THE ISIR-ALGORITHM . . . . . 128

5 A POWER PLANT FEEDWATER SYSTEM 131
5.1 HEAT EXCHANGERS . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 Saturated steam in a drum . . . . . . . . . . . . . . . 132
5.1.2 Heat flow through a heat exchanger wall . . . . . . . . 138

5.2 A FEEDWATER SYSTEM . . . . . . . . . . . . . . . . . . . 141
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 A CONTINUOUS STIRRED TANK REACTOR 150

7 OSCILLATING SYSTEMS 156
7.1 EMPLOYING NUMERICAL INTEGRATION . . . . . . . . 157

8 DISCUSSION 162
8.1 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 164

8.1.1 The basic algorithm . . . . . . . . . . . . . . . . . . . 164
8.1.2 Describing the desired behaviour . . . . . . . . . . . . 166
8.1.3 Supporting the model generation . . . . . . . . . . . . 168

5



8.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . 168

9 CONCLUSIONS 171

A ABOUT PROLOG 179
A.1 VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.2 FACTS AND RELATIONS . . . . . . . . . . . . . . . . . . . 180
A.3 BACKTRACKING . . . . . . . . . . . . . . . . . . . . . . . . 183
A.4 RECURSION AND LISTS . . . . . . . . . . . . . . . . . . . 183
A.5 OTHER STRUCTURES - A BINARY TREE . . . . . . . . . 185
A.6 THE ‘CUT’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.7 METALOGICAL FEATURES . . . . . . . . . . . . . . . . . 188
A.8 CONSTRAINT LOGIC PROGRAMMING . . . . . . . . . . 191

6



1 INTRODUCTION

The motivation for this research arose from the following observations on
operating and control of industrial process plants:

• Traditional control engineering concentrates on continuous-time feed-
back control while for the design of automatics — automatic control
sequences, interlocking, protections etc. — there exist no mature tools
although they constitute an essential part of a typical control system;

• Due to increasingly strict requirements on the operation of industrial
process plants and due to the tendency to increase the level of au-
tomation the current practices to design control systems may not be
sufficient in the future;

• Stricter requirements on plant operation and the development of infor-
mation technology increase the interest in sophisticated operator sup-
port systems. However, there is no mature generic method of imple-
menting support for example for action planning;

• Knowledge based techniques are widely proposed to be applied on prob-
lems related to process plant operation. However, mainly heuristic ex-
pert knowledge represented as rules is utilized while most of the knowl-
edge needed in plant operation can be obtained from plant design doc-
uments;

• Formal methods are promoted for software development and verifica-
tion and validation (V&V). However, formal development is often based
on software requirement specifications which are considered a signifi-
cant source of errors. To avoid errors originating from software require-
ments specifications the formal methods should be extended to cover
also the environment of the software, for example the process plant to
be controlled or monitored.

Plant operation, control system design, autonomous control, construct-
ing knowledge-based design and operator support systems and formal de-
velopment of safety-critical control and monitoring systems have common
denominators:

• They all require a plant model which can be used to solve a large variety
of different types of problems;
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• The systems addressed have both continuous and discrete dynamics;

• Often the knowledge must be on an abstraction level higher than real-
valued functions; generalisations of the plant behaviour rather than
particular solutions are needed.

• Uncertainty and incomplete knowledge must be handled properly.

Always when addressing process plant control or monitoring the conven-
tional control engineering the perspective illustrated in Fig. 1 should be
adopted.

Figure 1: The problem domain of designing and verifying a control and mon-
itoring system

This problem description can be applied to designing plant automat-
ics, to specifying embedded system software requirements, to constructing
a knowledge-based system to control or to monitor the plant, and to opera-
tor support systems.

In this work techniques are developed which allow the use of supporting
computers in solving control and monitoring problems which can be charac-
terized as follows:
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Plant: The plant dynamics can be modelled accurately enough with ordi-
nary differential equations. Optionally some parts of the plant can be
modelled as a state automaton.

Sometimes only rough quantitative knowledge or even only qualitative
knowledge of the plant is available.

Control: Control tasks accomplished mainly with sequences of discrete ac-
tions driven by discrete events are addressed. Start-up, shutdown,
batch process control etc. imply such control tasks. Autonomous con-
trol with the requirement to recover from faults and failures require
this type of control as well.

Tuning of e.g. PID-controllers is not addressed but it is assumed that
continuous-time feedback control works according to its specifications.

Monitoring: There is a tendency to design alarm systems so that they take
into account the operational state of the plant. This work provides
some possibilities to guarantee that the alarm system reacts on all the
illegal conditions and only on them.

Fault diagnosis, finding an explanation why the plant does not work
properly, can be seen as a dual problem to plant control.

Operational requirements: Operational requirements describe the desired
operation of the plant, the goal of operation, as specified by the designer
of the plant. The specification may contain quantitative performance
criteria but this work addresses problems where a significant part of the
desired operations is described with logic clauses and state automata.

Operational restrictions: Operational restrictions complement the oper-
ational requirements by specifying undesired operation. It is typically
specified with logic conditions that should never become true. They
may give limits never to be exceeded, and they may tell something
about illegal order of operating pumps and valves.

1.1 CONTENTS OF THIS REPORT

In the following introduction plant control in general is briefly discussed.
The use and the design of discrete-event control is discussed to present the
central field of this work. Then links to software engineering and developing
knowledge-based systems are indicated.
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Computer aided design is discussed to determine the role of computerised
tools in control system design.

Section 2 gives a brief introduction on existing analysis and synthesis
tools for dynamic systems are discussed. References to qualitative reason-
ing literature relevant to this work are presented. Finally, different ways to
represent the knowledge available and needed in control system design and
plant operation are discussed.

Section 3 discusses constraint logic programming. The emphasis is on
examples demonstrating the algorithms and programming techniques applied
in implementing ISIR.

Section 4 presents the ISIR-algorithm. After examples on applying ISIR

on the verification and design of discrete-event control systems it is shown
how subtasks in model-based reasoning are dealt with when implementing
ISIR. It is also shown how the ISIR-models can be applied in conventional
simulation and dynamic optimisation and it is discussed how to integrate
these techniques into the basic ISIR-algorithm. Support for model generation
is briefly discussed.

Section 5 demonstrates how to construct an ISIR-model of a power plant
feedwater system.

Sections 6 and 7 demonstrate the analysis of a behaviour of a continuous
stirred tank reactor and oscillating systems. The former is an example to test
the ability of a qualitative reasoning tool to discover significantly different
system behaviours. Analysis of the oscillating systems is another test to find
the limits of a tool.

Section 8 discusses the strengths and the limitations of ISIR and the work
needed to make it into a practical general-purpose tool.

Appendix A gives an overview on prolog and constraint logic program-
ming in CLP(R).

1.2 CONTROLLING PROCESS PLANTS

A control task can be determined by
• the description of the system to be controlled, i.e. the plant model;
• the specification of the operational restrictions, and the ‘cost’ of oper-

ation;
• the specification of the goal of operation.
Some kinds of plant models are used in designing plant control strategies

and in supporting plant operation. There are different types of plant subsys-
tems and different types of problems to be solved requiring different types of
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models. Sometimes a rough mental model supported by plant P&I-diagrams
is sufficient, sometimes the model must be suitable for formal mathematical
manipulation.

The objective is to determine a control strategy which meets the goal and
minimises the cost of operation without violating the operational restrictions
like safety margins. The goal of the control can be given as the boundaries
of the desired state of the plant or as performance criteria to be maximised.
There are also operational restrictions given strictly as logic conditions on
symbolic values like ‘when pa = running then it must be v1 = open’, etc.
The goal of operation may give some explicit constraints on the inputs, but
mainly it constrains the outputs of the system. The goal is not given as a
single state or a trend curve but as a performance criterion to be maximised
and/or as a set of logic conditions to be satisfied. The control strategy must
determine the inputs which result in a behaviour satisfying the requirements.
The inputs must be determined as a function of time and/or as a function of
the plant state.

Control tasks form a hierarchic structure. On the lowest level single
components like pumps are controlled. A large pump driven by an electric
motor requires quite a complex control logic.

Stabilizing chemical and physical processes or making them follow given
references is on the next level in the hierarchy. In addition to the above, unit
control includes initiating and stopping the processes and taking them from
one mode of operation into another. In batch production these tasks may
constitute the major part of the control system.

The use of the process units must be co-ordinated, the raw materials
and intermediate products must be transferred between process units and
storages in the plant. The processes must be provided with the resources, for
example cooling, needed during the process. All this type of scheduling and
solving the routing problems is on the next level in the control hierarchy.

Depending on the type of the control requirements and on the type of
the plant subprocess to be controlled, different kinds of control strategies are
applied. Continuous time feedback control is used to keep given process out-
puts at given reference values, optimisation is applied to determine optimal
operation region or optimal trajectory to change the states of continuous time
subsystems, discrete-event automatics are used to change the plant mode of
operation.

Both closed-loop and open-loop control must be dealt with. All on-line
control requires feedback — closed-loop control — due to uncertainties in the
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process models and external inputs1.
It is not sufficient to find a sequence of control actions which accomplishes

a state change in a simulator. A general, robust control strategy insensitive
to external disturbances must be determined. This can be applied on a wide
range of operation. Such strategies cannot be implemented without feedback.

In action planning and control system design open-loop scenario gener-
ation to predict all the alternative behaviours and the extreme bounds of
those plant behaviours is needed.

1.3 DISCRETE-EVENT CONTROL

In addition to stabilization, reference following and determining optimal con-
trol for continuous processes, it is necessary to start up and shut down com-
plex process plants and change their mode of operation through applying
mainly discrete control actions. Discrete-event control or logic control is also
used for example to control the phases of a chemical batch process according
to a given recipe, to recover from exceptional situations after a component
malfunction, in partial plant shutdown for maintenance, to control processes
having complex discrete dynamics and only simple continuous-time subpro-
cesses, and in safety systems and interlocking. The control actions are taken
by the operator or by plant automatics consisting of automatic control se-
quences, interlocks and protections.

Because of possible failures and large disturbances it is difficult to fore-
see in advance all the situations which can be encountered. Therefore, the
control system must be able to determine the controls on-line i.e. feedback
control is necessary. PID-controller keeping the output in its reference and an
automatic control sequence to start up a plant are both feedback controllers
but for the latter there are no systematic design methods.

Stricter requirements on the efficiency, raw material and energy saving as
well as a need for flexible production require new types of plants, new ways
to operate them, higher level of automation and more sophisticated operator
support systems. Monitoring, supervisory control and diagnosis tasks earlier
handled manually must be automated or the operators must be provided with
computerised operator support systems to accomplish the tasks optimally.

The higher the level of automation, the more important the role of the
automatics, and the more complex the automatics grow. Considering highly

1Feedback in a PID control loop is very different from the feedback employed in an
automatic control sequence to e.g. start up a plant
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autonomous operation shows clearly the importance of automatics and po-
tential benefits of some sort of mechanised reasoning.

1.3.1 Designing discrete-event control

The theory of traditional control engineering has been successfully applied
in solving a wide range of industrial control problems in the continuous-time
domain. However, industrial process control is not only determining the opti-
mal value for a real-valued control signal but also opening and closing valves,
starting and stopping pumps, switching on and off stabilizing controllers, etc.
This kind of control is executed by discrete-event control systems which are
called also automatics in this report. Many high-level control tasks are imple-
mented using discrete-event control rather than any kind of continuous time
control. This is mainly because of the nature of the task but also because
discrete-event control gives good enough results while requiring less accurate
models and less computing capacity.

Automatic control sequences have a discrete set of possible states, their
input is a set of discrete (often binary) signals and output is a set of discrete
control actions. State transitions are triggered by input signals. Interlocking
and protection are implemented as a separate part of a discrete-event control
system. Interlocking prevents the automatics or the operator from taking
certain control actions in situations where they might take the plant in an
unsafe state. Protections take the plant from an unsafe to a safe state, for
example by shutting it down. Documentation standard for discrete-event
control systems is presented in [24].

Discrete-event control is commonly used in implementing control tasks
where many of the functional requirements can be specified by conditions
telling what is acceptable and what is unacceptable rather than as a crite-
rion to be minimised. Designing discrete-event control strategies does not
typically require accurate plant models but much of the design can be based
on rough qualitative knowledge. More important than reproducing the ac-
tual behaviour with high accuracy is to characterise the essential events and
other properties of the behaviour in a way that can be made efficient use
of. General qualitative characteristics of the behaviour are important, not
exact particular predictions of the behaviour. Only final tuning of the time
delays and of the threshold values of taking some actions require more exact
quantitative information.

Designing discrete-event control systems requires that many different sit-
uations be considered. One of the difficulties is to detect all the qualita-
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tively different alternative behaviours of the plant and to determine all the
necessary preconditions of a successful control action and to notice all the
possible consequences of a control action. Possible errors in the design are
incomplete exception handling, unforeseen side-effects in the co-operation of
various pieces of automatics, etc. Many errors are due to various mindlocks
caused by the complexity of the behaviour of the overall system.

Some questions that should be asked during the design:

• Do the interlocks prevent unsafe operation in every situation?
• Do the interlocks prevent normal operation in some situation?
• Do the interlocks prevent necessary corrective actions in some abnormal

situation for example after a component failure?
• Can the control sequence be initiated in every situation it is needed?
• Do the preconditions of the sequence prevent initiating it in every case

it cannot or should not be executed?
• Can the sequence be executed under all the anticipated external inputs

and disturbances?
• Do the automatics function properly in all the plant states and in all

the phases of the sequence also after any of the anticipated faults?
• How robust are the automatics? Can a minor change in the plant

dynamic properties have a significant effect on the functioning of the
automatics?

If simulation is used in testing the automatics it is necessary to run the
simulator through a complicated sequence of states to achieve good coverage
of testing. A lot of planning is required to identify the significantly different
situations to be tested and to plan how to run the simulator so that those
situations are encountered. The problem is not to predict accurately one
of the possible behaviours but to give at least rough indication of all the
significantly different alternative behaviours resulting from disturbances, the
uncertainty in the model parameters and in the external inputs.

In principle there are two different ways to solve control problems: Either
an optimal control problem or a logic problem can be formulated. There are
numerical methods to solve typical optimal control problems. Logic problems
can be solved with for example knowledge-based (KB)-techniques and more
sophisticated theorem provers. The strengths of mathematical optimisation
are that complicated continuous-time system models and quantitative perfor-
mance criteria can be treated accurately. The strengths of the KB-techniques
are flexibility and efficient treatment of discrete-event systems.

KB-techniques require that the knowledge on the problem domain is pre-
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sented in a form that allows logic reasoning, i.e. allows making inferences.
The research on reasoning on time and action and on the behaviour of phys-
ical systems has resulted in so called qualitative modelling [33]. In the fol-
lowing the term qualitative modelling is used to mean representation of the
knowledge on first principles of plant behaviour — laws of physics, plant
structure, etc. — in a way that allows mechanised reasoning.

Some recently developed programming languages, like CLP(R) and Prolog-
III have efficient built-in capabilities to solve mixed mathematic and logic
problems. Thus they suit well for implementation of tools applying the prin-
ciples of qualitative modelling in the design of discrete-event control. [10]
gives an introduction to Prolog-III and [9] discusses constraint logic pro-
gramming languages in general.

1.4 SOFTWARE ENGINEERING

Embedded plant control and monitoring software may be safety critical.
There is increasing emphasis on the use of formal methods in the development
and verification of safety critical software systems. The discrete features of
the software are often the source of errors. They are addressed by most of the
formal methods promoted in the software community. Because requirements
specification errors are the main source of problems in software development,
special effort should be addressed on formal description of the environment of
the software system imposing the requirements. For control and monitoring
systems the environment is the process plant to be controlled and monitored.

In [38] Leveson presents the observation that the more complex the sys-
tems are and the more there is coupling between different parts of the system
and between different phenomena taking place in the system, the more likely
accidents are to occur. She reflects this observation to computerised process
control systems of growing complexity.

She claims that the approach used in information processing and data-
processing systems will lead to failure when applied on control systems. She
futher claims that writing software requirements in isolation from the system-
engineering process is bound to lead to problems.

She also claims that techniques to ensure the correctness of software re-
quirements that do not include models or considerations of the controlled
process cannot possibly be effective. She presents the control engineering
view of the control problem by presenting the concepts of process models,
operational restrictions and closed-loop control. She points out that modern
process control includes high level supervision and planning in addition to
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regulation and maintenance of process state.
She claims that many accidents and runtime failures stem from synchro-

nisation problems (their internal model of the system gets out of sync with
the real state) and from inadequacies in the software handling of transitions
between normal processing and various types of partial or total shutdown of
the computer or the system.

According to Leveson one of the challenges is to define models that let
the developer verify that the software requirements are correct — that the
software will satisfy the process control requirements and constraints when
combined with the modeled behaviour of the other system components.

One of the research issues is to look at what the models must be able to
model, what types of analysis are potentially possible and useful. She lists
as some of the topics to be considered timing, inclusions of failures into the
models and allowance to specify hazards.

1.5 KNOWLEDGE-BASED SYSTEMS

Often it is thought that knowledge-based techniques can be applied only in
expert systems employing heuristic expertise. Consequently knowledge-based
techniques are considered an isolated research field of their own. However,
actually knowledge-based techniques can be applied on different types of
knowledge, heuristic or not. The ISIR-algorithm is based on knowledge-based
techniques but it utilizes plant models based on plant design documents. As
such it is an example of a deep knowledge system.

By definition ‘shallower’ knowledge can be deduced from ‘deeper’ knowl-
edge, but not vice versa. Hence there is no absolute distinction between
‘deep’ and ‘shallow’ knowlege. In general the term ‘deep knowledge’ is used
to refer to the first principles governing the phenomena taking place in the
problem domain. It is claimed that applying the principles of deep knowledge
allows tractable and systematic representation of the system knowledge.

[43] discusses shallow v. deep knowledge demonstrating the advantages
of applying deep knowledge. Deep knowledge systems are more maintainable
and they can give valid reasons for the judgements. Knowledge acquisition
is much easier in some domains. Deep knowledge systems may be simpler
than conventional expert systems in extremely complex domains. Knowledge
can be reused more easily. The drawbacks of using deep knowledge are that
constructing the first deep knowledge system for a particular domain requires
a large effort. More computing capacity is needed in problem solving. In some
domains the first principles are unknown.
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Deep knowledge and model-based reasoning are claimed to be necessary in
implementing dependable knowledge-based systems. Design tools and var-
ious operator support systems are typical applications of knowledge-based
techniques in the process industry. Knowledge-based systems are often ap-
plied to achieve more autonomous problem solving so that higher level prob-
lems can be solved automatically. This requires plant modelling and problem
solving methods on a higher level of abstraction than in traditional control
engineering.

In [4] it is claimed that utilizing and combining ideas from control en-
gineering, software engineering and artificial intelligence are necessary to
achieve dependable knowledge based systems for process plant control and
monitoring.

1.6 COMPUTER-AIDED DESIGN AND DECISION MAK-
ING

Human reasoning is efficient in many ways but there are some weaknesses
like limited memory capacity; it is difficult to keep in one’s mind many things
simultaneously. This also excludes manual brute-force search strategies and
the use of complex procedures. Complex routine tasks are error-prone due
to fatigue. Limited computation capabilities exclude computation intensive
approaches.

Human reasoning and computer ‘reasoning’ complement each other; hu-
man reasoning is based on focusing on the main subject and efficiently ignor-
ing all the irrelevant aspects and irrelevant knowledge, while computer rea-
soning is based on using computing speed and memory capacity to consider
all the provided knowledge. An expert is needed to supervise the principal
design but filling in all the details and doing all the checking is better suited
for a computer.

Many engineering design processes can be divided roughly into two phases:

Principal design: The principal design is sketched on an abstract qualita-
tive level using a rough abstract requirements specification. The mod-
els used and produced are lay-out drawings, flow diagrams, simplified
mathematical equations with unknown parameters, and the designers’
mental models of the component dynamics.

Dimensioning: Alternative principal solutions are evaluated and elaborated.
Quantitative calculations are used to determine the dimensions and var-
ious ‘tuning’ parameters of the system.
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In [50] Stephanopoulos discusses intelligent computer-aided process de-
velopment and design, analysis and diagnosis of process operations as well
as planning and scheduling of plant-wide operations. He clearly addresses
‘principal design’ rather than ‘dimensioning’. ISIRis also meant to support
the principal design.

Traditionally most of the design tools and methods have concentrated on
the second phase of the design; determining the dimensions and on tuning.
The designer’s own reasoning has been considered as the main design tool in
the first phase.

The computerised tools, methods and models used in determining the di-
mensions of the system cannot be used in the initial design but this does not
mean that computers are of no use: Many of the problems of the initial design
can be solved with mechanised procedures that can be automated. Mecha-
nised reasoning is based on comparing alternatives and choosing appropriate
ones. In process plant control the alternatives available are introduced by the
plant model, and the criteria used to evaluate them are determined by the
goal of the control and by the operational restrictions. The efficiency of the
reasoning and the applicability of the model depend on how well the model
presents the knowledge and the alternatives relevant for the problem to be
solved.

Much of the design of control systems is based on plant design docu-
ments. However, plant design documents are static descriptions which do
not reveal explicitly the cause-consequence relations and dynamic properties
of the plant. Making a working model, however coarse, forces the developer
to consider the system behaviour carefully. Modelling and using the model,
for example in animation and in solving control problems, reveals possible
inconsistencies and incompleteness of the designer’s mental model of the sys-
tem. Because qualitative modelling does not require accurate plant models,
it can be used already during early design phases when there is no exact
plant model, only some sketches without for example exact parameters of
components.

1.6.1 Decision support

The above perspective on computer-aided design is related to the discussion
on extending the interpretation of what ‘decision support’is. What kind of
support is needed in making design decisions or decisions on operating the
plant?

In [20] Fox proposes the use of qualitative reasoning and first-order logic
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as decision support. He claims that numerical methods cover only a small
part of the decision process. He introduces methods for reasoning for and
against decision options; for introducing new options; structuring the de-
cision; representing beliefs, values and preferences; taking the decision and
improving the communication between the decision support system and the
user. He sayhe decisions to be taken, and quantify all the parameters neces-
sary to assess them.

Travé-Massuyes discusses in [40] qualitative reasoning and decision sup-
port systems.

Summary New challenges for control engineering are identified requiring
the development of the methods of control engineering. Designing process
plant control requires solving many different types of control problems. Com-
puterised support for the design of automatics requires autonomous versatile
problem solving.
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2 CONTROLLING DYNAMIC SYSTEMS

The introduction indicated that traditional methods to analyze and synthe-
sise dynamic systems fall short on problems addressing hybrid systems, and
when general abstract solutions rather than particular ones are needed. In
the following a brief survey on litterature presenting similar observations and
stating new requirements for control engineering is given. After that differ-
ent methods for the design and analysis of dynamic systems are discussed to
present their applicability and their weaknesses.

The research field of qualitative reasoning is presented very briefly. Al-
though the ISIR-algorithm is based on the QSIM-algorithm for reading this
report it is not necessary to know qualitative reasoning in more detail. How-
ever, interested readers are strongly encouraged to familiarise themselves with
at least QSIM.

At the end of this section different ways to represent the knowledge on
plant state and behaviour are discussed.

2.1 CHANGING REQUIREMENTS ON PLANT CONTROL

In [6] challenges for future control engineering are discussed. It is claimed to
be important to be able to work with incompletely modeled systems, with
systems having nontraditional models, and with dynamic systems driven with
discrete events. It will be necessary to plan, manage and control systems of
unprecedented complexity. Robustness and fault-tolerance will be important.
Many failure modes must be taken into account in the design of control
systems.

The need to develop methods for the design and analysis of hybrid (con-
tinuous and discrete) dynamic systems is discussed also in [25]. There James
claims that discrete-event dynamic systems (e.g. batch control, start-up and
shutdown) are of increasing importance. According to him, synthesis of con-
trol and systems theory with symbolic reasoning and computer science must
be reached, and decision support systems will become an important field in
control engineering.

The synergy of control engineering and computer science is also discussed
in [55] by Wonham. He claims that control engineering in the future will
encounter more and more often tasks where knowledge on for example state
automata and the like would be useful.

[12] Gives a good introduction on the problem of operating complex sys-
tems. A model and constraint based approach is proposed and using con-
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straints is discussed in more detail.
[37] claims that the tasks to be undertaken should determine the type

of the knowledge used and that the qualitative methods complement the
traditional analytic modelling techniques. The methods can be combined
into an abstraction hierarchy which can be used in multilevel problem solving.
Analytic models are best at giving an exact prediction. A continuous real
valued function of time is a solution of the analytic approach. However, if
the model is imprecise or ambiguous, the actual response is different from
the predicted one. If the model is incomplete the analytic method cannot be
applied at all.

There are many other tasks in addition to prediction. “The utility of the
model depends on a number of factors, not only on its accuracy in faithfully
reproducing real behaviour. Rather it is often necessary that only essential
events be characterised and that such characterisation be accomplished as
efficiently as possible. Moreover, the user must be confident that the model
will not lead, in some subtle way, to the wrong conclusions.”

“The performance criterion must be mapped on the same level of abstrac-
tion as the model. Analytic methods require a precise objective. In practice
the control tasks are frequently represented by multiple and often conflicting
criteria. Also, the overall objective may be to obtain a solution within the
constraints imposed by the criteria i.e. to satisfy the criteria rather than to
obtain a unique optimal solution.”

2.2 METHODS FOR ANALYSIS AND DESIGN OF DY-
NAMIC SYSTEMS

There are various methods to analyze and design dynamic systems.

• Initial value problems of continuous time dynamic systems can be solved
with simulation to answer ‘what if’ questions.

• There are methods to solve boundary value problems to find out how
to achieve the desired behaviour, i.e. to answer ‘how-to’ questions.

• There are methods to tune feedback control loops to achieve desired
closed-loop response.

• Discrete-event systems can be analyzed using discrete-event simulation,
petri-nets, state automata, temporal logic etc.
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• Hybrid systems, systems having both continuous time and discrete-
event dynamics, can be dealt with to some extent. Simulation of hybrid
systems is straightforward, boundary-value problems can be formulated
so that some of the control inputs can have only a discrete set of values.

However, for many design, planning, supervisory control and decision
making tasks the above are not sufficient:

• The models available may be (partially) qualitative descriptions while
traditional methods require quantitative models.

• Available quantitative knowledge may be so inaccurate that the inaccu-
racy requires explicit consideration. Traditionally, sensitivity analysis
is typically used to find a confidence interval for the predictions of the
model, but in addition it is necessary to deal with for example unde-
terministic predictions due to qualitative and inaccurate knowledge.

• ‘what-if’ and ‘how-to’ as well as other questions like ‘is-it-possible-that’
and ‘why-did-that-happen’ may require answers on different levels of
abstraction.

For example a how-to question may be stated in detail: how to move
the plant from state a to state b when the external inputs behave like
the function s(t). Often the problem is, however, to determine a control
strategy which takes the plant near state b from a wide range of states
under poorly known external disturbances. Robustness and generality
are the important features of such control strategies.

Implementing autonomous control systems and making better use of
computers in the operator support systems as well as in design tools has
revealed the need for problem solving on different levels of abstraction.
Sometimes detailed particular solutions are needed, sometimes more
general results. Even if a human expert can generalize for example
results of a few simulations they cannot necessarily be made use of in
automated reasoning.

• Many control and surveillance tasks require complex logic reasoning on
the behaviour of a hybrid system.

• High level of flexibility is needed in problem solving.

• Traditionally, many design problems are solved in a stepwise refine-
ment manner: The very principles of potential alternative solutions are
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sketched first after which they are elaborated. The initial phase is ac-
complished on a high level of abstraction by a human engineer while
computerised tools are used to check some details at the later phases.
To make better use of computers methods to utilize them in the earlier
phases of the design must be developed.

• Efficient use of computers in problem solving requires that the com-
puter take a large enough share of the routine tasks. For example, if
simulation is used to verify given control sequence under the assump-
tion that certain failures may take place, the tool should be able not
only to simulate the plant but also determine which are the significantly
different scenarios to be produced and execute them automatically.

Boundary value problems may result from subproblems like “is it pos-
sible to reach level X = Xmax in time ∆T < 130s”. The problem
solving tool must, in addition to solving a boundary value problem,
formulate the problem and present the result in a way applicable in
further problem solving.

There are many ways to find out what happens to a rocket when it is
shot upwards with some initial velocity. We can use simulation, but the
result of a simulation does not tell us that there are significantly different
types of solutions. In this simple case we can solve the equations of motion
analytically to learn that there are two qualitatively different alternatives
depending on the initial velocity: the rocket falls down to the earth or it
escapes earth. That solution gives a general insight into the behaviour of the
rocket. But if only vertical movement is taken into account in the equations,
the solution leaves us ignorant of the possible orbital solutions.

If the whole task is that of finding out how the rocket behaves, there is
no problem, because a human expert evaluates the results. But if there is
a similar subproblem solved autonomously and the results are further used
in solving a larger problem, the ignorance of some alternative solutions may
remain unobserved.

When to pour the milk into the coffee to have it as warm as possible when
starting to enjoy it at a later time? The first approximative solution is that
whenever the milk is added, it is not possible to tell the difference. The piece
of knowledge, that the coffee looses the more heat the higher the temperature
difference, indicates that the milk should be added immediately. However, if
the milk is much colder than the room temperature, a lot of milk is used and
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the coffee is not very warm it might be better to wait for the milk to warm
up.

How to solve this kind of problems automatically so that the results be-
come available for further automated reasoning? It is important to recognise
all the significantly different potential solutions for further elaboration. It
is important to have a general high-level problem solving framework which
allows the use of various well-known problem solving techniques to solve the
low-level problems.

The above tasks require solving both logic and numeric (mathematical)
problems. Because of the complexity of the problems the tool supporting
the operator or the designer of the control system must be able to solve
autonomously the low level routine problems. The effort needed to formulate
the problems to the tool should be minimised.

Because the tasks require versatile problem solving, it is impossible to
create a fixed procedure to accomplish them. For the same reason knowledge
representation should allow flexible use of the knowledge.

Logic programming in e.g. Prolog provides versatile solving of logic prob-
lems. Prolog is a commonly used platform for artificial intelligence (AI) ap-
plications. Constraint logic languages like CLP(R) and Prolog-III extend the
scope of logic programming to numeric problem solving. In addition they al-
low a programming style which often reduces the computational complexity
significantly.

2.3 QUALITATIVE REASONING

‘Qualitative’ modelling refers to knowledge representation formalism and re-
lated reasoning methods which allow solving of problems related to dynamic
continuous-time systems on an abstraction level higher than for example in
traditional simulation and optimisation. The principles of qualitative mod-
elling can be used to implement versatile model-based reasoning applying
deep knowledge.

In [30] Koch compares the three levels of human performance, the skill-
based behaviour, the rule-based behaviour and the knowledge-based behaviour
with techniques and methods to automate them:

• Lookup-tables and neural networks relate to skill-based behaviour;

• PID-, state-space, rule-based and fuzzy control relate to rule-based be-
haviour;
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• For knowledge-based behaviour, which is based on mental models, there
are no techniques or methods of automation. Qualitative reasoning is
an approach to fill this gap.

Koch discusses human reasoning on technical systems in detail. He also
discusses the different paradigms of qualitative reasoning and presents a mod-
ular reasoning approach implemented in object-oriented programming.

DeKleer discusses in [29] the prediction and explanation of the behaviour
of mechanisms in qualitative terms. A qualitative calculus is presented to
deduce the behaviour of a system.

In [17] Forbus presents a qualitative process theory to be used in reason-
ing about physical systems. The basic concepts of the theory are presented
as well as a language to write physical theories. The paper also discusses the
reasoning that can be accomplished on the theories and presents the prin-
ciples of the reasoning. Forbus’s approach is a process centred one, where
process means a continuous change of the state of the system like heating.

In [31] Kuipers is to some extent on the same lines as DeKleer and For-
bus. However, he concentrates on the computational aspects assuming that
the user produces the model of the system in a formalism quite similar to
differential equations. The model can be seen as a set of constraints on the
behaviour of the system. An implementation of the QSIM-algorithm — a
Commonlisp program Q — is documented in [16]. Q provides many demon-
strations on qualitative modelling so that it can be used to get acquainted
with the principles.

Among others Dalle Molle [11] and Fouche [19] have studied the applica-
bility of QSIM and further developed the approach.

In [5] many terms central to qualitative modelling are defined, some of
which are used in this report.

[48] presents an interpretation of qualitative simulation which is based on
phase space representation which is also used in this report.

[2], [28] and [3] discuss the quantitative aspects of Q3, a tool developed on
top of the basic QSIM-implementation. Q3 allows the use on quantitative in-
formation when available. Among other things this allows the approximation
of elapsed time.

One of the applications of model-based reasoning is diagnosis. Diagnosis
is not discussed here in any detail. [41] gives an introduction on the problems
of plant diagnosis. [15] discusses diagnosis in depth and presents an approach
based on QSIM.
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2.3.1 Summary

Qualitative reasoning is a trial to automate such human behaviour for which
no techniques of automation have existed. Various techniques developed for
qualitative reasoning have the properties needed in ‘new control engineering’.
ISIR is based on ideas adopted from qualitative reasoning, especially QSIM.

The most important idea in this work adopted from QSIM is the idea of
dividing the behaviour of a continuous-time system into episodes. The range
of any variable is divided into intervals by landmark values significant for
the dynamics of the system. The pair of magnitude and direction of change
of every variable is considered where magnitude is discretized according to
the landmarks and the direction is considered to be increasing, steady or
decreasing. Temporally this means that continuous functions of time are di-
vided into episodes divided by significant time points at which the qualitative
value of the function changes, i.e. a landmark is crossed or the direction is
changed.

2.4 REPRESENTING PLANT KNOWLEDGE

Knowledge on the state and on the behaviour of an industrial process plant
is represented in different ways depending on the nature of the knowledge to
be represented and on the intended use of the knowledge.

The plant state is represented as a composition of the values of a selected
set of plant variables called plant state variables. By definition the plant
state at time t0 together with the values of external inputs during the in-
terval t ∈ [t0, t1] determine x(t), t ∈ [t0, t1] where x(t) can be called plant
behaviour. Plant behaviour is represented as a composition of the behaviours
of the individual state variables. The behaviours are determined from the
plant model which tells a) in continuous time domain the derivatives of state
variables and b) in discrete-event domain the successors of the state variables
as a function of plant state and external control inputs.

2.4.1 Representing plant state

Real numbers are often used in representing the parameters and the states
of continuous-time processes, and in representing the external control inputs,
see Fig. 2.4.1.

When applying real numbers full machinery of numerical mathematics can
be applied. Among other things implicit ordering of the values is provided.
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Figure 2: Real number. Carries im-
plicit mathematical knowledge; for ex-
ample the ordering, and mathematical
operations.

But a tool relying only on real numbers forces the user to model everything
accurately.

One way to represent uncertainty of process parameters and process state
is to use intervals of real numbers2, Fig. 2.4.1.

Figure 3: Intervals on the real axis.
Carries implicit mathematical knowl-
edge.

Using intervals in addition to real numbers makes it possible to express

2Probability distributions are another common way to represent uncertainty. Applying
them requires some knowledge or assumptions about the nature of uncertainty. Applying
intervals gives as a result what is possible and what is impossible while applying probability
distributions gives as a result a distribution telling how probable different values are.
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more of the available knowledge. Discrete-event control strategies rely on
interval-based information on plant state. Safety margins of plant operation
are often given as intervals. On intervals of real numbers the conventional
mathematical operations and algorithms can be applied.

Numeric intervals carry implicit information on the ordering of the limit
values. When using numeric values and computations based on them, a lot
of implicit knowledge is used. This may have implications difficult to realize.
Thus, when numeric values are used, they should reflect the actual system. If
the user is forced to use numeric intervals when no quantitative information
actually is available, he has to ‘invent’ numeric values for the parameters. At
this process some invalid knowledge may easily be introduced because of the
implicit mathematic relations of numeric values, especially the ordering. For
such systems it is necessary to provide the user purely qualitative methods,
Fig. 2.4.1.

Figure 4: Intervals with symbolic land-
marks. N.B. the textual specification
does not fully determine the ordering
given in the graphic representation.

Notice that the inequalities in the figure do not tell if l < h′. To achieve
something similar in quantitative problem solving we must define for example
that 2 ≤ l ≤ 4, 3 ≤ h′ ≤ 5.

Higher level reasoning in early design and diagnosis often relies strongly
on symbolic values and on ordinal relations between them. The QSIM algo-
rithm is based on this kind of knowledge. It has an algorithm of its own to
handle relations like add(X,Y,Z) and mult(X,Y,Z) between symbolic inter-
vals. The modeller can choose to which extent the ordinal relations of the
landmarks of the variables are given. Another difference to using real inter-
vals is that there is no measure of difference, only ordinal relations. This
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allows flexible representation of abstract incomplete knowledge so that all
the knowledge is explicitly presented.

Figure 5: The states of a valve.

There are also symbolic values which have no ordering, Fig. 2.4.1. Various
relations between them can be specified explicitly using logic clauses.

2.4.2 Representing dynamic behaviour

System behaviour can be represented as a combination of the behaviours of
the state variables. The behaviour of a real-valued signal is a trend curve
which tells the value of the signal at every time point, Fig. 2.4.2.

Such a trend curve is a useful piece of information for a human expert
but it is difficult to use as such in further automatic analysis. The more so
because to reflect uncertainty a set of trend curves is needed.

With interval representation the trend curve can be divided into episodes
during which the curve experiences no qualitatively significant change, i.e.
no change in the sign of the first (and the second) derivative; Fig. 2.4.2.

Each episode is specified using upper and lower limits, start and end time
of the episode and the shape of the curve determined by the sign of the first
(and the second) derivative. All or some of the limits are given as symbolic
values only. Start and end points of an episode can be given either as real
numbers or as intervals of real numbers or as symbolic values.

The origianl QSIM-algorithm directly generates such a qualitative repre-
sentation of the behaviour using symbolic knowledge only as in Fig. 2.4.2.
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Figure 6: Real valued function of time.

Figure 7: Episodes with some real-
valued landmarks.
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Figure 8: Episodes with symbolic land-
marks only.

Later modifications of QSIM allow the use of quantitative knowledge when
it is available to refine the prediction.

A state automaton is a natural representation of the behaviour of a system
whose states are represented using symbolic discrete values, Fig. 2.4.2.

Figure 9: Discrete state automaton.

The trend curve of Fig. 2.4.2 is less appropriate for many purposes,
for example for the design of discrete-event control, than the episodes in
Fig. 2.4.2. The trend curve must be represented as a long sequence of real
numbers while the episode representation requires only two records carrying
the initial and final value of the episodes and the signs of the derivatives. It
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is also important to notice that the episode representation is uniform with
the representation in Fig. 2.4.2. This aspect is demonstrated further below.

2.4.3 Behaviour of a simple dynamic system

Fig. 10 shows how a phase-portrait of a continuous-time dynamic system can
be transformed into a state-automaton which gives a general description of
the system behaviour. Such a state automaton can directly be made use of
in automated reasoning.

Figure 10: Phase Portrait of the system ẋ(t) = v(t), v̇(t) = a(t), f(t) =
ma(t) = −kx(t) and the corresponding discrete-event representation of the
behaviour. The latter applies for all m > 0 and k > 0.

The state space is discretized according to the landmark values which are
significant for the dynamics or for the outside observer. In this case the only
significant landmarks are x = 0 and y = 0 because on those lines ẋ and v̇
change sign.

The direction of change is discretized to three values, increasing,
decreasing and steady. The signs of the derivatives in each region (=

discrete state) determine the possible transitions between states. As a result
the time gets divided into intervals separated by distinguished time points
at which the system experiences some qualitatively significant changes. No
attention is paid on knowing accurately the trajectories but the values of the
state variables are rather given as relations to significant threshold values
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together with the direction of change. Even such a rough view on plant
behaviour is sufficient for designing discrete control actions to control the
plant.

From such a model the upper and lower limits of the durations of the time
intervals can sometimes be approximated but exact durations can seldom be
determined. However, more important than to know the time exactly is
to know the order in which the significant events occur. When there is a
lot of concurrent behaviour, even exact information on timing does not tell
that order, because the initiating events of many phenomena are typically
asynchronous.

Summary The lines or surfaces on which any of the derivatives of the
system state variables vanish divide the state space into regions together
with other lines marking some significant threshold values. The direction
of the movement of the system inside the regions and across the borders of
the regions is determined by the derivatives of the state variables. Making
use of this observation the knowledge in the system equations can be used
in the reasoning on the behaviour of a continuous time system using the
techniques provided by the knowledge-based systems. This approach gives a
unified perspective on the behaviour of both discrete-event and continuous-
time systems.

[14] presents a living example — KSE system monitoring nuclear power
plant power supplies — on model-based reasoning. The paper also introduces
the concepts of ‘deep knowledge’ and ‘shallow knowledge’ and discusses the
benefits of applying mode-based reasoning rather than first-generation expert
systems. Evolution prospects of the same approach on other plant systems
is discussed as well as objectives of such evolution.
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3 CONSTRAINT LOGIC PROGRAMMING

Because discrete phenomena are so important in plant control, it is natural
to consider logic programming as a tool to implement algorithms to support
control system design and plant operation. However, many plant properties
are most naturally represented with mathematical equations, not with logic
clauses, and the main phenomena taking place in a plant have continuous time
dynamics. The ISIR-algorithm addresses especially the problem of dealing
with systems having both discrete and continuous dynamics and which are
modelled partially with mathematical equations, partially with logic clauses.

Constraint logic programming languages have special features which make
them especially suitable for handling this kind of problems. A constraint logic
program is a set of mathematical equations and axioms of first order logic.
The inference engine determines if the set of constraints is satisfiable and if
so, which subregion of the parameter space satisfies the constraints.

In this section constraint logic programming is demonstrated with various
examples and its use in solving some basic algorithmic problems of the ISIR

program is also explained. This is done by the following steps:

Programming language: A brief introduction of the semantics of logic
programming, constraint logic programming and CLP(R) is given.

Verification: An essential part of the implementation of ISIR has a special
structure. Some general rules on ‘informal verification’ of programs
with such a structure are given.

Discrete dynamics: The ISIR-algorithm is based on considering the system
behaviour as a directed graph called reachability graph or state graph.
The concept of reachability graph is introduced and an example on
reachability graph generation is given.

Using constraints: An example on applying pure CLP(R) on a ‘routing’
problem described with linear equations only is presented. Solving
nonlinear equations is discussed.

‘freeze’: A technique to reduce the complexity of the computation is pre-
sented.

Intervals: The ISIR-algorithm represents quantitative knowledge as inter-
vals of real numbers. The principle of the interval computation utilised
in ISIR is explained and demonstrated. The approach is based on global
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optimisation contrary to many other approaches utilizing specific inter-
val operators and local propagation.

3.1 SEMANTICS OF THE LANGUAGE

In this and the later sections programming language CLP(R) is used as a
representation language. For those familiar with Prolog reading CLP(R) pro-
grams should be easy. The main difference is that the operator is is not
defined and =-sign should be used instead. Consequently a clause X = Y +

Z is not a rule how to compute X but a relation which X and Y must satisfy.
Because CLP(R) interpreter can solve mathematical equations in addition to
logic problems CLP(R) can be seen as an extension of Prolog on the domain
of real numbers.

The execution order of the program is not strictly from left to right as in
Prolog because of the need to handle properly the mathematical constraints.
For example the CLP(R) interpreter delays the equation X = Y + Z until
there is enough information to solve X,Y Z, i.e. more equations with X,Y

and Z are encountered or some of the values of X,Y and Z are given in the
program.

A Prolog program is a collection of facts about objects [7]. likes(john,

beer) tells about objects john and beer the fact that the relation ‘john
likes beer’ stands between them. A variable can be used to stand for any
object in a relation. Any name beginning with a capital letter is taken to be
a variable. The names of the relations, for example likes above, cannot be
variables.

The following examples from [27] illustrate the semantics of Prolog. The
Prolog program

sister(X,Y):-

dif(X,Y),parent(X,Person), parent(Y,Person).

can be transformed into the predicate logic clause

∀X ∀Y ∀Person(sister(X,Y )←
¬(X = Y ) ∧ parent(X,Person) ∧ parent(Y, Person))

and further into

∀X ∀Y (sister(X,Y )←
∃Person¬(X = Y ) ∧ parent(X,Person) ∧ parent(Y, Person))
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Which can be read as “for all X and Y stands that they are sisters if
there exists somebody who is the parent for both of them and if X and Y
are different”.

The program

parent(X,Y):- mother(X,Y).

parent(X,Y):- father(X,Y).

can be written in predicate logic as

∀X ∀Y (parent(X,Y )← mother(X,Y ) ∨ father(X,Y ))

which can be read as “for all X and Y it stands that Y is a parent of X
if Y is the mother of X or if Y is the father of X”.

The facts on family relations can be presented as follows:

mother(maija,eeva).

mother(kaisa,eeva).

mother(annastiina,maija).

mother(ilona,maija).

father(kaisa,risto).

The program is executed by making a query, which is simply a relation
which may have some variables in it. The Prolog interpreter checks if the
relation is in accordance with facts and relations given in the program, i.e.
if the relation in the query can be deduced from the facts and the relations
in the program. In doing this the interpreter ‘fills in’ appropriate values for
the variables as shown below:

SICStus 0.6 #18: Fri Jun 11 11:18:28 CDT 1993

Copyright (C) 1987, Swedish Institute of Computer Science.

All rights reserved.

| ?- sister(maija,X).

X = kaisa

yes

maija has a sister X whose name is kaisa.
If there are alternative solutions they can be found by rejecting the first

solution.
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| ?- mother(maija,risto).

no

| ?- mother(maija,X).

X = eeva ? ;

no

| ?- mother(X,eeva).

X = maija ? ;

X = kaisa ? ;

no

| ?- father(X,Y).

X = kaisa, Y = risto ? ;

no

Prolog applies so called ‘closed world assumption’ which means that a fact
not explicitly stated in the program is false. For example, according to the
above program jane has neither father nor mother because there is not a
corresponding relation in the program.

Constraint logic programs have in principle the same semantics as ordi-
nary Prolog programs but the constraint approach requires different imple-
mentation of the language and it allows more efficient programming tech-
niques. The predicate dif(X,Y) in the above program is actually a con-
straint — it constrains the possible values of X and Y. In standard Prolog
the test on inequality of two uninstantiated variables is meaningless so that
a corresponding test should be made only after it is certain the variables are
instantiated.

Standard Prolog has no built-in capability to solve mathematical prob-
lems. CLP(R) is a constraint logic programming language which can solve
linear equations and inequalities and to some extent also nonlinear equations.
In effect this means that the relations in the program can be mathematical
equations and inequalities in addition to logic clauses.

CLP(R) Version 1.2

(c) Copyright International Business Machines Corporation

1989 (1991, 1992) All Rights Reserved

eq(X,Y,Z):- 3 ?- eq(X,-2,Z).
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X > 0, Z = 4

X + Y = Z, X = 6

X - Y = 2*Z. *** Yes

1 ?- eq(X,Y,Z). 4 ?- eq(X,Y,1).

Y = -0.5*Z Y = -0.5

X = 1.5*Z X = 1.5

0 < Z *** Yes

*** Yes

2 ?- eq(1,Y,Z).

Z = 0.666667

Y = -0.333333

*** Yes

In appendix A Prolog and CLP(R) are presented in more detail and with
more examples.

3.2 SOME CORRECTNESS CHECKS OF CONSTRAINT
LOGIC PROGRAMS

There is no way to prove the absolute correctness of programs, but explicit
consideration of certain topics increases the confidence on the programs.

Much of the ISIR-algorithm is implemented applying a common constrain-
and-generate (often called test-and-generate) programming technique. In this
approach there is a generator spanning the whole problem space by produc-
ing all the possible combinations of the allowed values of the variables. From
this space non-solutions are excluded with various constraints. Dividing the
problem solution into two — generation of all the alternatives in the prob-
lem space, and testing which of the alternatives are solutions — makes the
programming much easier to compare to programming an explicit solution.
In addition test-and-generate solutions are more flexible than programs ap-
plying fixed procedural algorithms: they can solve a wider range of problems
and they are easier to modify to solve new types of problems.

The above benefits are achieved with the expense of computation time.
To avoid going through the whole search base the constraints are ‘executed’
first as in the example in Table 1 which searches for all the combinations of
three integers in a given set whose sum is in a given range:
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S = {(x, y, z)|2 ≤ x+ y + z ≤ 3, x, y, z ∈ {−2,−1, 1, 2, 3, 4}}

Table 1: An example on the test-and-generate approach. set counter,

add counter and counter value are non-logical features of CLP(R) on which
backtracking has no effect. The first alternative of test and generate goes
through all the alternatives (note the fail at the end). The second alternative
then prints the summary of the execution. 40 alternatives are fully evaluated
while there are 63 possible combinations of the variables X,Y and Z.

test_and_generate:-

set_counter(iter,0),

test(X,Y,Z,Sum),

generate(X),

generate(Y),

generate(Z),

add_counter(iter,1),

printf(

’x: % y: % z: % sum: %\n’,

[X,Y,Z,Sum]),

fail.

test_and_generate:-

counter_value(iter,Trials),

printf(’% trials’,[Trials]).

test(X,Y,Z,Sum):-

X+Y+Z = Sum,

2 <= Sum, Sum <= 3.

generate(-2). generate(-1).

generate(1). generate(2).

generate(3). generate(4).

1 ?- test_and_generate.

x: -2 y: 1 z: 3 sum: 2

x: -2 y: 1 z: 4 sum: 3

x: -2 y: 2 z: 2 sum: 2

.

.

.

x: 3 y: 1 z: -1 sum: 3

x: 3 y: 2 z: -2 sum: 3

x: 4 y: -2 z: 1 sum: 3

x: 4 y: -1 z: -1 sum: 2

x: 4 y: 1 z: -2 sum: 3

40 trials

*** Yes

In the example the test tells which alternatives are acceptable. It is also
possible to construct tests telling which alternatives are unacceptable and
that all the alternatives which are not explicitly stated as unacceptable are
acceptable. Note that only 40 alternatives are fully generated although there
are altogether 63 alternatives.

The following checks should be made on constrain-and-generate programs.
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1. Check that the generator base contains all the actual solu-
tions.

The solutions are searched only among the alternatives provided by
the generator. In most cases constructing and verifying the generator
is straightforward.

2. Check that the constraints do not exclude any solutions.

The tests usually consist of many separate constraints which can be
verified one by one making the verification simple. However, there is
one pitfall when using languages like CLP(R) which apply the closed
world assumption: All the alternatives not considered in the test are
excluded because the test fails. When the test is composed of many
individual predicates it is not easy to see which part of the generator
space is actually covered. Thus, during the verification it is a good idea
to check for which range of the generator space the tests are defined.

In some special cases the goal may be to find one solution. Then it is
sufficient that not all the solutions are excluded.

3. Check that the constraints exclude all the non-solutions.

The constraints must be constructed to have an easy to understand
structure to avoid any non-solutions to be accepted. Automatic check-
ing on which alternatives the individual tests succeed and fail can reveal
errors.

If the goal is to check that nothing can ever go wrong, then not suc-
ceeding to exclude all the non-solutions only poses some extra safety
requirements for the system under analysis.

4. Check that the computation will end.

Error in the program structure (typically in the end condition of recur-
sion) or an uninstantiated end condition of recursion may cause infinite
computation. The former error will be revealed in the first test and thus
causes troubles to the program developer only. But the latter may pass
the tests unnoticed causing the user troubles whose reason is difficult
to identify.

5. Explain the reason for using assert, retract, cut, if-then-else
structures and other non-logical features.
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Meta-logical features are easily used more often than necessary in logic
programming. Because they break the clear logic structure of the pro-
grams special discipline must be obeyed when they are used.

6. If dynamic predicates are used, check that they are properly
initialised.

Assert and retract cause meta-logical side-effects whose effect may per-
sist even from one execution of program to the execution of another
program if appropriate initializations are not made.

7. List the special assumptions on e.g. initial instantiation of the
variables.

Use of meta-logical features may limit the applicability of the program
for example by requiring that some of the arguments in the top-level
predicate must be initially instantiated. Such limitations must be made
explicit in the documentation or preferably additional test on correct
initialisation should be included in the program.

The above can be applied in a hierarchic manner on the program modules.

3.3 REACHABILITY GRAPH OF A DISCRETE-EVENT
SYSTEM

A discrete-event system experiences discrete state transitions (= events)
which take the system from one discrete state to another. Thus, the be-
haviour of a discrete-event system can be represented as a directed graph
called a reachability graph because it tells which states can be reached from
an initial state. The analysis of the dynamics of discrete-event systems is
commonly based on the reachability graph.

The reachability graph is generated using axioms telling the relationships
of the system variables and the changes which they may experience. To
demonstrate how the reachability graph is generated, a childrens’ game is
studied as an example of a typical discrete-event control problem.

In the game an object is moved in steps on a track like for example the
one in Fig. 3.3. The object has a velocity in the x- and the y-direction. The
velocity can be increased or decreased with one unit in each step. At each
step the object is moved as many units of distance as the velocity indicates.
The goal is to reach the end of the track with as few steps as possible.
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Figure 11: The track for the game.
The velocity of the object on the track
on the player’s k:th turn is
vx(k) = vx(k − 1) + ux(k)
vy(k) = vy(k − 1) + uy(k)
ux, uy ∈ (−1, 0, 1)

Moving the object according to the rules, marking every position of the
object and drawing an arrow from one position to the next one gives a state
graph3. Trying out all the alternatives gives a state graph which represents
all the legal possible paths from start to goal in a compact way. The following
example shows how such a graph can be generated automatically.

For the purposes of the analysis the track is defined in CLP(R) as a
predicate track(S) in Table 2, which is true if the object is on the track
and it is moving in the allowed direction. The rules of movement can be
given as in Table 3.

The reachability graph of an object moving on the track can now be gen-
erated by calling the predicate path(0,st(0,1,0,0)) where st(0,1,0,0)

is the initial state representing the position (0,1) and zero velocity; see Table
4.

The first argument M is the identification number of the current state
and the second argument S0 is the current state. Recursion on this branch is
finished if the maximum number of steps is exceeded ( Len0 < Max). A new
possible state is generated using the rules of moving the object one step (
step(S0,S)). Because the rules do not forbid stopping it is checked that the
result is a state different from the current one ( not(S0 = S)). According
to the rules the new position must be on the track ( track(S)). Because all
the paths will be passed and because separate paths may join, it is necessary

3Actually it is not sufficient to consider the position of the object as its state but its
velocity must also be considered.
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Table 2: The definition of the track in Fig. 3.3.

track(S)

S: the state of the object represented as a structure
st(X,Y,Vx,Vy)

X, Y: the x- and y-positions of the object
Vx, Vy: velocities in x- and y-directions.

track(st(X,Y,Vx,_)):-

0 <= X, X < 4, 0 <= Y, Y <= 2, Vx > 0.

track(st(X,Y,Vx,Vy)):-

4 <= X, X <= 6, 0 <= Y, Y <= 2, Vx > 0, Vy > 0.

track(st(X,Y,_,Vy)):-

4 <= X, X <= 6, 2 < Y, Y < 6, Vy > 0.

track(st(X,Y,Vx,Vy)):-

4 <= X, X <= 6, 6 <= Y, Y <= 8, Vx < 0,Vy > 0.

track(st(X,Y,Vx,_)):-

0 <= X, X < 4, 6 <= Y, Y <= 8, Vx <= 0.
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Table 3: The rules of moving the object.

step(S0,S)

S0: state before the move
S: state after the move.

step(st(X0,Y0,Vx0,Vy0),st(X0+Vx,Y0+Vy,Vx,Vy)):-

speed(Vx0,Vx), speed(Vy0,Vy).

speed(V0,V0+1). speed(V0,V0-1). speed(V0,V0).

Table 4: Recursive generation of the reachability graph. See the text for a
detailed explanation.

path(M,S0,Len0,Max)

M: Id. number of the current state
S0: current state
Len0: the number of steps taken this far
Max: maximum allowed number of steps

path(M,S0,Len0,Max):-

Len0 < Max,

step(S0,S), % step further

not(S0 = S), % really moving on ?

track(S), % on the track ?

is_new(M,N,S), % not been here before ?

Len = Len0 + 1,

path(N,S,Len,Max). % proceed
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to check that the state S really is a ‘new’ one, not one belonging to a path
which has already been passed ( is new(M,N,S)). If all the above conditions
are true, then the algorithm proceeds along the path ( path(N,S,Len,Max)).
If any one of the above conditions fails, then the algorithm backtracks and
tries other alternatives, if any. (In effect it retries step(S0,S).) 4

All the states and transitions passed must be stored for later comparison
with new states and transitions. The predicate is new in Table 5 compares
the state with those already generated and stores it if it is a new state (see
Fig. 3.3);

Table 5: Inserting new states and transitions into the graph.

is new(M,N,S)

M: id number of the current state
N: id. number of the next state
S: new state to be checked

is_new(M,_,S):-

state(K,S), % not a new state

not(trans(M,K)), % but a new way to get there

assert(trans(M,K)), % insert the transition

fail. % but do not proceed in this direction

is_new(M,N,S):-

not(state(_,S)), % a new state

get_number(N), % give it a unique name

assert(state(N,S)), % insert the state

assert(trans(M,N)), % and the transition

printf(’new state % % -> %\n’,[S,M,N]).

4The algorithm presented here is not the only possibility. Another common alternative
to solve this kind of problems avoids the use of assert by storing the graph in a list instead.
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Figure 12: One step of the state graph
generation.
1: A new state and a new transition:
Insert both the transition and the state
into the graph.
2: A new transition into an existing:
insert the transition into the graph.

• If there is already a similar state ( state(K,S)) but there is not a
transition from the current state to it ( not(trans(M,K))), then a new
transition has been detected and a corresponding edge will be inserted
into the graph ( assert(trans(M,K)). However, there is no need to
proceed in this direction ( fail).

• There is not yet a similar state ( not(state( ,S))) in a graph, and both
the state and the transition to it must be inserted ( assert(state(N,-
S)), assert(trans(M,N))). In this case the graph generation must
proceed in this direction.

• If there is already a similar state and a transition from the current state
to that state in the state graph (both the definitions of is new fails),
then nothing new to insert in the graph has been found.

Fig. 3.3 shows one path of the state graph taking the object from the
initial state to the final one.

5

Fig. 14 shows all the paths which take the object into the final state in 8
steps.

It is possible to solve the problem even when the initial and goal states
are only partially defined by requiring that initially 0 ≤ y ≤ 2 and at the

5The state of the object is determined by its position and its velocity. When drawing
the plot the x- and the y-velocities are indicated as biases from the position.
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Figure 13: The first solution.

Figure 14: All the solutions.
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goal state 6 ≤ y ≤ 8. The resulting track has then some points where y does
not have a real value but is constrained on an interval: state(1, st(1,

1, 1, 1)):- 1 <= 2, - 1 <= -1.

3.3.1 Summary

A generally applicable predicate path is presented for the analysis of discrete
systems for which xk+1 = f(xk) and where the additional constraints are of
the form g(xx) where g is a set of equations and inequalities. Naturally f
and g can also contain logic clauses. An approach similar to the one in the
above example is applied in the ISIR-algorithm.

3.3.2 Correctness proof of the reachability graph generation

The predicates path and is new in the previous section are evaluated ac-
cording to the principles presented in section 3.2.

Checking the predicate path

1. Check that the generator base contains all the actual solu-
tions.

step(S0,S) gives, if the track is correctly specified, a successor for the
state S0. On backtracking it gives another alternative successor or fails
if there are no more alternative successors.

If neither track(S) nor is new(M,N,S) fails at least path(N, S,

Len, Max) will fail; if not earlier at least when the condition Len0 <

Max becomes false. Thus the program will finally always backtrack and
all the alternatives provided by step(S0,S) will be tried. Because
path is recursive, the above applies also to all the successors of S0.

2. Check that the constraints do not exclude any solutions.

len0 < Max limits the maximum depth of the search but constrains the
solution in no other way.

not(S0 = S) does not exclude any solutions.

track(S) excludes, if the system is correctly specified, only illegal so-
lutions which take the object outside the track.

is new is discussed later.
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3. Check that the constraints exclude all the non-solutions.

track(S) excludes solutions which take the object outside the track.

is new is discussed later.

4. Check that the computation will end.

The predicate path has only one definition. In each step forward the
parameter Len is increased by one. Thus the recursion is limited by
the condition Len0 < Max.

5. Explain the reason for using assert, retract, cut, if-then-else
structures and other non-logical features

None used.

6. If dynamic predicates are used, check that they are properly
initialised.

None used.

7. List the special assumptions on e.g. initial instantiation of the
variables.

It is not necessary to define completely either the initial or the final
state, but the instantiations should define a solvable problem to guar-
antee that the computation will end.

The id. number of either the initial or the goal should be instantiated
to get the id. numbers for the states.

Checking the predicate is new

1. Check that the generator base contains all the actual solu-
tions.

Because is new is used purely as a constraint this is not relevant.

2. Check that the constraints do not exclude any solutions.

is new prevents ‘looping’. It inhibits recursion from states already an-
alyzed. The first rule fails when the state S generated by step(S0,S)

is already in the graph. Proceeding with the recursion from such a
state would give no new solutions. The second rule succeeds when S is
a new state.
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3. Check that the constraints exclude all the non-solutions.

Non-solutions will not appear as an argument of is new. Its task is to
store the graph and avoid infinite looping in the computation.

4. Check that the computation will end.

is new inserts state S into the graph if it does not already exist there.
It also inserts the edge S0 → S if it is not yet inserted. Insertion is
accomplished by assert and there is no retract in the algorithm.

is new prevents the recursion from passing twice through the same
edge in the graph. Thus, if the graph has a finite number of edges the
computation will end.

5. Explain the reason for using assert, retract, cut, if-then-else
structures and other non-logical features.

Assert is used only to incrementally build the state graph.

6. If dynamic predicates are used, check that they are properly
initialised.

In the examples the following instantiations are used:

retractall(state(_,_)),

assert(state(0,st(0,1,0,0))),

retractall(trans(_,_)),

setcounter(counter,0),

Hence all the dynamic variables are properly initialised.

7. List the special assumptions on e.g. initial instantiation of the
variables.

There are no special assumptions. To get an instantiated solution it is
necessary to have the problem sufficiently well defined.

3.4 APPLYING CONSTRAINT EQUATIONS

The ISIR-algorithm is based on the CLP(R) programming language which is a
generalisation of the programming language Prolog. CLP(R) allows also the
use of mathematical equations and inequalities in programs. The following
exemplifies what can be achieved with pure CLP(R).
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3.4.1 Structural reasoning

Finding a route to transfer material from one place to another in a large
network of pipes, valves and pumps is a typical problem in the operation
of process plants. Sometimes it is necessary, in addition to finding a route,
also to take into account some quantitative constraints or to satisfy some
quantitative requirements.

Figure 15: Valves in a network of
pipes.

The system in Fig. 3.4.1 is given a specification in Table 6 to demonstrate
how to solve such routing problems. The flow through the valve is modelled
to be proportional to the pressure difference when the valve is open. When
the valve is closed the flow is modelled to be zero and the pressure is left free.
The four valves in the system are required to satisfy the relation defined by
the valve model and the pressures and flows are required to be those given
in 3.4.1. In addition it is stated that there is no conservation of mass.

The model can be used to solve for example under which conditions F4 > 1
or F4 > 3 when the pressures are known. As the results in Table 7 show
making F4 > 3 is impossible.

The above approach may be of practical use, but often the uncertainty of
the parameters should be taken into account. Because pressures and charac-
teristics of the valves are seldom known exactly, relying on a single value will
give misleading results. For example in some cases the actual flow may have
a direction opposite to the one predicted by the model only because of a small
error in the model parameters. This is especially important when there are
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Table 6: Model of the system in Fig. 3.4.1. The fourvalves constrain the
pressures accross them and the flows through them. Because no mass is stored
in the system the sum of the flows is zero. When a valve is open the flow
through it is modeled to be proportional to the pressure difference. When the
valve is closed there is no flow and the valve does not constrain the pressure
difference in any way.

net(P1,P2,P3,P,F1,F2,F3,F4,V1,V2,V3,V4):-

valve(V1, P1 - P, F1, G1),

valve(V2, P - P2, F2, G2),

valve(V3, P - P3, F3, G3),

valve(V4, P, F4, G4),

F1 = F2 + F3 + F4,

valve_params(G1,G2,G3,G4).

valve(open,Dp,F,G):- F = G*Dp.

valve(closed,_,0,_).

valve_params(0.1,0.3,0.6,1).

where

valve(State,Pressure,Flow,Flow coeff)

State: the state of the valve, open or closed
Pressure: pressure difference over the valve
Flow: flow through the valve
Flow coeff: ‘conductance’ of the valve
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Table 7: Solving two routing problems.

?- net(P1, P2, P3, P, F1, F2, F3, F4, V1, V2, V3, V4),

P1 = 10, P2 = 6, P3 = 3, F4 > 1, F4 < 2.

V4 = open V3 = open V2 = closed V1 = open

F4 = 1.64706 F3 = -0.811765 F2 = 0 F1 = 0.835294

P = 1.64706 P3 = 3 P2 = 6 P1 = 10

V4 = open V3 = open V2 = open V1 = closed

F4 = 1.89474 F3 = -0.663158 F2 = -1.23158 F1 = 0

P = 1.89474 P3 = 3 P2 = 6 P1 = 10

V4 = open V3 = closed V2 = open V1 = closed

F4 = 1.38462 F3 = 0 F2 = -1.38462 F1 = 0

P = 1.38462 P3 = 3 P2 = 6 P1 = 10

V4 = open V3 = open V2 = closed V1 = closed

F4 = 1.125 F3 = -1.125 F2 = 0 F1 = 0

P = 1.125 P3 = 3 P2 = 6 P1 = 10

?- net(P1, P2, P3, P, F1, F2, F3, F4, V1, V2, V3, V4),

P1 = 10, P2 = 6, P3 = 3, F4 > 3.

*** No
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nonlinearities in the models. In the approach taken in this report the values
of the variables are intervals rather than single point values. Determining
regions of possible solutions rather than single point values results in implicit
sensitivity analysis.

There is also another point of view on uncertainty: Because many prob-
lems can be solved without exactly knowing the parameters the problem
solving tools should not require the extra trouble of finding out the exact
values of the parameters.

It is not always easy to see when a problem is under- and when over-
determined. If the flow F4 had been exactly determined there would have
been no solution. Had one of the valve coefficients been undefined, there
would have been no solution. It is much easier to use a tool which always
gives some solution that helps in reformulating the problem than a tool which
gives a solution only after the problem is formulated well enough. The interval
approach taken here assumes the initial value {−∞,∞} for any variable not
assigned explicitly a value. Thus there is always a solution which can then
be further adjusted by constraints excluding unreasonable values.

3.4.2 Solving systems of nonlinear equations

CLP(R) can solve any set of linear equations and inequalities (in addition to
Prolog-like logic constraints). It can also deal with non-linear constraints to
some extent by ‘putting them aside’ to wait for some of the variables in them
to get solved so that the constraint becomes linear. For example xy = z is a
nonlinear constraint but after executing constraints a+ y = 3 and a− y = 1
it becomes linear because y gets solved.

In terms of the procedural semantics of Prolog, non-linear CLP(R) con-
straints always succeed in allowing the execution to continue and not forcing
the program to backtrack. Backtracking occurs only later if it turns out, due
to some of the variables getting instantiated, that the non-linear constraint
cannot be satisfied. In the previous example on the valves, the constraints
of the form xy = a are handled properly, because in course of the execution
either x or y is instantiated thus making the constraint linear.

If there is a constraint y = x2 then y can be solved when x is instantiated
(i.e. known) but not vice versa. But if a constraint x = ±√y is added in the
program, then also x can be solved when y is known. If the set of constraints
contains an (implicit) second order equation, the solution formula of the
second order equation can be added into the constraints so that CLP(R) can
solve them. The predicate polynom(X,Y) in Table 8 implements a solution
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to the equation y = x2 − 3x+ 2.

Table 8: Analytic solution of a second-order constraint. Because CLP(R)

cannot completely handle nonlinear equations an analytic solution must be
introduced into the program.

polynom(X,Y):- sec_ord(1,-3,2-Y,X).

% imaginary roots omitted

sec_ord(A,B,C,X):-

A*X*X + B*X + C = 0,

Tmp = pow(B*B - 4*A*C,0.5),

sec_ord2(A,B,Tmp,X).

sec_ord2(A,B,Tmp,X):- Tmp > 0, 2*A*X = -B + Tmp.

sec_ord2(A,B,Tmp,X):- Tmp > 0, 2*A*X = -B - Tmp.

sec_ord2(A,-2*A*X,Tmp,X).

In Table 9, x or y is solved using polynom(X,Y).
The more there are nonlinear equations, the more the above approach re-

sembles a sort of local propagation, in which the equations are like separate
constraints through which the known values of the variables are propagated.
When implemented in CLP(R) it is more than pure local propagation because
the constraints become linear after some variable assignments are solved glob-
ally, but still it is not guaranteed that all the problems which have analytic
solutions can be solved with this approach. To always find the solutions, the
whole set of constraints must be analyzed and all the non-linearities which
are ‘coupled’ together must be given an explicit analytic solution as a simul-
taneous set of non-linear equations.

3.5 FREEZING UNINSTANTIATED CONSTRAINTS

Internally CLP(R) delays non-linear constraints until they become linear
when some of the variables involved get solved. The same approach can be
applied as well on other cases to reduce the complexity of the computation.
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Table 9: Applying an analytic solution of a second-order constraint.

1 ?- polynom(1,Y).

Y = 0

*** Yes

2 ?- polynom(0,Y).

Y = 2

*** Yes

3 ?- polynom(X,1).

X = 2.61803

*** Retry? y

X = 0.381966

*** Yes

4 ?- polynom(X,Y).

2*X - 3 = pow(4*Y + 1, 0.5)

Y + 3*X - 2 = X * X

Y + 3*X - 2 = X * X

*** Retry? y

-2*X + 3 = pow(4*Y + 1, 0.5)

Y + 3*X - 2 = X * X

Y + 3*X - 2 = X * X

*** Maybe

The piece of code in Table 10 solves two second order equations y =
x2−3x+2 for values y = 0, y = 1, y = 2 under given additional requirements
on the solutions. Increasing the counter ‘n’ ( add counter(n,1)) is meant
to represent some complex computation.

The output in Table 10 shows that there are two solutions and that the
counter is passed 18 times. Most of the calls to sec ord are unnecessary
because they occur during backtracking when A < 0.2 fails. In such cases
trying out the other solution is unnecessary because the condition will fail
until B gets another value.

In the example in Table 11 calling the predicate sec ord2 is postponed
until all the variables needed in obtaining a solution are instantiated. Thus a
ground result is obtained and it can be directly used further in the constraints.
Inconsistent results are noticed immediately and much less computation is
needed.

Freezing, i.e. postponing or delaying the call of sec ord2 is accomplished
by gathering calls to it in a list and processing them later by calling the
freezed-predicate. The same result as before is obtained but this time the
counter is passed only 3 times.

The above example was artificially constructed to demonstrate the effect
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Table 10: Useless backtracking because of uninstantiated constraints. For
example if B gets a value which results in A1,2 ≥ 0.2 then both solutions
for polynom(C,D) are determined for A1 and then again the same for A2.
Evidently it is useless to call polynom(C,D) until either C or D is known so
that it can be determined which one of the alternatives in sec ord2 in Table
8 to choose.

dem_frz0:-

set_counter(n,0),

y(B),

polynom(A,B),

polynom(C,D),

add_counter(n,1),

A < 0.2, C < 1,

y(D),

printf(’a:% b:% c:% d:%\n’,

[A,B,C,D]),

fail.

dem_frz0:-

counter_value(n,N),

printf(’% trials’,[N]).

y(0). y(1). y(2).

3 ?- dem_frz0.

a: 0 b: 2 c: 0.382 d: 1

a: 0 b: 2 c: 0 d: 2

18 trials

*** Yes
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Table 11: Freezing (delaying) uninstantiated constraints until the variable(s)
which determines the alternatives to choose, get instantiated.

dem_frz1:-

set_counter(n,0),

y(B),

polynom(A,B,Frz1),

polynom(C,D,Frz2),

add_counter(n,1),

A < 0.2, C < 1,

y(D),

freezed([Frz1,Frz2],[]),

printf(’a: % b: % c: %

d: %\n’, [A,B,C,D]),

fail.

dem_frz1:-

counter_value(n,N),

printf(’% trials’,[N]).

polynom(X,Y,Frz):-

Y = X*X - 3*X + 2,

sec_ord(1,-3,2-Y,X,Frz).

% imaginary roots omitted

sec_ord(A,B,C,X,Frz):-

A*X*X + B*X + C = 0,

Tmp = pow(B*B - 4*A*C,0.5),

Frz = freeze(Tmp,

sec_ord2(A,B,Tmp,X)).

4 ?- dem_frz1.

a: 0 b: 2 c: 0.381966 d: 1

a: 0 b: 2 c: 0 d: 2

3 trials

*** Yes
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of freezing some constraints. In the example the complexity could have been
reduced by reorganising the code, but in general such reorganising is very
difficult especially in large programs. The more so because the optimal order
of the constraints depends on the order in which the variables get instanti-
ated, which cannot be assumed to be known when constructing programs for
general problem solving.

Because CLP(R) does not currently have means to freeze goals selected
by the user, freezing is implemented using the predicates in Table 126.

In the above examples the benefits of freezing were demonstrated by
counting the times a part of the code is executed. It has been tested that
freezing implemented even with the above inefficient metalevel approach can
reduce also execution times drastically, and that it never increases the exe-
cution time significantly.

3.6 SOLVING INTERVAL CONSTRAINT PROBLEMS

For various reasons interval constraint problems are often encountered. For
example uncertainty on a parameter c can be expressed as cmin ≤ c ≤ cmax

and plant automatics are based on discrete control actions triggered by pro-
cess variables exceeding given threshold values. The previous example on
the valves also showed that being able to work only on exact values is not
sufficient, because of being too restrictive to require exact values of the valve
parameters and pressures to be known.

The following example shows the principles of how interval constraint
problems are solved in the ISIR-algorithm. Variables x, y, a, and b are con-
strained into a closed region S where 0 ≤ x ≤ 10, 1 ≤ y ≤ 9,−5 ≤ a ≤ 100
and 2 ≤ b ≤ 50. In addition they are constrained by the equations x+ y = a
and x ∗ y = b.

In the program in Table 13 the constraint equations are first activated by
calling the predicate equation(X,Y,A,B). Then every variable is assigned a
value

z :


z = zmin

z = zmax

zmin < z < zmax

one by one. Finally the result is printed out.
It is evident that when the solution is a point (the results given in ground

terms, marked with ‘*’ in Table 13), it represents a corner of the region S

6There are Prolog dialects which provide ‘freeze’ as an internally implemented feature.
Maybe it, or something more general, will be implemented in CLP(R) as well.
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Table 12: Predicates to freeze (delay) goals until the selected variables get
instantiated.

The alternatives of frozen correspond to the following cases:

1. All the delayed goals are executed.

2. No more delayed goals can be executed before some more variables get
instantiated. Some frozen goals remained as a residue.

3. One run through the list of frozen goals is finished. Start a new run
to check if the goals executed during the previous run made possible to
execute still some more.

4. Process one frozen goal. The lock is ground and the goal can be executed.

5. Process one frozen goal. Because the lock is not ground, the goal cannot
be executed.

freezed(Frozen, Residue)

Frozen: Delayed goals,
Residue: Goals which could not yet be executed.

frozen(Frozen, Unprocessed, Switch, Residue)

Frozen: Delayed goals
Unprocessed: Collection of goals which could not be executed yet.
Switch: tells if any of the goals has been executed. Used to control the

repeated processing of the list of frozen goals.
Residue: Goals which could not be executed yet.

freezed(Frozen,Residue):- frozen(Frozen,[],f,Residue).

frozen([],[],t,[]):- !. % 1

frozen([],Frozen,f,Frozen):- !. % 2

frozen([],Frozen,t,Residue):- frozen(Frozen,[],f,Residue). % 3

frozen([freeze(Lock,Goal)|T],Frozen,_,Residue):- % 4

ground(Lock),

call(Goal),

frozen(T,Frozen,t,Residue).

frozen([freeze(Lock,Goal)|T],Frozen,Switch,Residue):- % 5

nonground(Lock),

frozen(T,[freeze(Lock,Goal)|Frozen],Switch,Residue).
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Table 13: Solving an interval constraint problem. Variables x, y, a, and b are
constrained into a closed region S where 0 ≤ x ≤ 10, 1 ≤ y ≤ 9,−5 ≤ a ≤ 100
and 2 ≤ b ≤ 50. In addition, they are constrained by the equations x+ y = a
and x ∗ y = b. First, the constraints are activated and then every variable is
assigned in turn the upper or the lower limit of its domain or it is constrained
between them. Finally, the solutions are printed out. The minimum and the
maximum of each variable can be searched from among the ground solutions
marked with an asterisk. The ground solutions represent the corners of the
range while the nonground ones represent a region or a section of a line or a
curve inside the range of the solutions.

demo:-

equation(X,Y,A,B),

x(X), y(Y), a(A), b(B),

dump([X,Y,A,B]),fail.

equation(X,Y,A,B):-

X+Y = A, X*Y = B. % the constraint equation

% any variable is on the border of S or inside S

x(0). x(10). x(X):- 0 < X, X < 10.

y(1). y(9). y(Y):- 1 < Y, Y < 9.

a(-5). a(100). a(A):- -5 < A, A < 100.

b(2). b(50). b(B):- 2 < B, B < 50.

The alternative solutions are the following:

* X = 10, Y = 1, A = 11, B = 10

* X = 10, Y = 5, A = 15, B = 50

X = 10, A = Y + 10, B = 10*Y, Y < 5, 1 < Y

* X = 2, Y = 1, A = 3, B = 2

Y = 1, A = X + 1, B = X, X < 10, 2 < X

* X = 0.222222, Y = 9, A = 9.22222, B = 2,

* X = 5.55556, Y = 9, A = 14.5556, B = 50

Y = 9, A = X + 9, B = 9*X, X < 5.55556, 0.222222 < X

A = Y + X, B = 2, Y < 9, Y + X < 100, X < 10, 1 < Y

-5 < Y + X, 0 < X, 2 = X * Y

A = Y + X, B = 50, Y < 9, Y + X < 100, X < 10, 1 < Y,

-5 < Y + X, 0 < X, 50 = X * Y

A = Y + X, Y < 9, Y + X < 100, B < 50, X < 10, 1 < Y,

-5 < Y + X, 0 < X, 2 < B, B = X * Y
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while a solution with equalities and inequalities represents a region inside S.
Thus it is sufficient to pick the results given in ground terms and search the
minima and maxima of the variables among them. For example it can be
seen that 3 ≤ A ≤ 15.

The example demonstrates the test-and-generate approach. When there
is a large set of equations it is not necessary to evaluate all of them for all the
possible combinations. For example after equation is called and after x and
y have been assigned the values x = 10, y = 9, a cannot be assigned the values
a = −5 or a = 100. This is because the equation constraints are activated
before generating values for the variables. In the example 11 solutions are
fully evaluated while the number of all the possible combinations is 34 = 81.

Summary In the above example a set of special type of optimisation prob-
lems is solved. The goals to be optimised are linear with respect to the
parameters. The extremes are on the borders of the region as in linear pro-
gramming. Contrary to linear programming the system equations are not
necessarily linear.

3.7 CONSTRAINED OPTIMIZATION

In the previous example the minima and maxima could be found at the
corners of the region. In the following example this is not the case. The
equation constraint is the equation 1 and initially there is a priori knowledge
that −3 ≤ x ≤ 3,−2 ≤ y ≤ 3 and − 5 ≤ z ≤ 15.

As Fig. 16 indicates it is possible to find tighter bounds for x, y and z
if the equation 1 is required to be satisfied. The borders of the region and
the lines where the derivatives vanish determine the potential extremes. The
non-constant partial derivatives of the variables are:

z = 3y2 + 3x2 + 2xy + 4y + 4x+ 3 (1)

∂z

∂x
= 0⇔ 3x+ y + 2 = 0 (2)

∂z

∂y
= 0⇔ x+ 3y + 2 = 0 (3)

∂y

∂x
= 0⇔ 3x+ y + 2 = 0 (4)

∂x

∂y
= 0⇔ x+ 3y + 2 = 0 (5)
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Figure 16: The contour plot of the surface 3y2+3x2+2xy+4y+4x+3−z = 0
when −3 ≤ x ≤ 3,−2 ≤ y ≤ 3 and − 5 ≤ z ≤ 15.

The second-order equations must be solved explicitly. Because equation

is called before any of the variables are grounded the two alternative solutions
to second order equations would lead to a lot of unnecessary backtracking.
Thus, solving any second order equation is postponed using the freezed-
predicate until its coefficients are ground. This is done by gathering the
goals into a list and, when appropriate, checking if any equation has ground
coefficients.

Table 14 gives a solution to the problem. First the equation constraint
is activated ( equation(X,Y,Z,Frz)). Then variables are constrained on
the borders of the region or inside the region ( l h(Xlh,X), l h(Ylh,Y),

l h(Zlh,Z)). After that it is checked if any of the delayed second order
equations can be solved ( freezed(Frz1,Res)). If the solution is not yet
constrained enough (i.e. (x, y, z) determines a cube, a plane or a line, not a
point, inside the borders) it is checked if any zeroes of the partial derivatives
lie in that region ( inside(X,Y,Z)). With freezed(Res,[]) the remaining
delayed constraints are solved. Finally ground triples of (x, y, z) are printed
out.

It is important to notice that equation can solve x if y is known and
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Table 14: Refining the a priori knowledge on system variables by using the
knowledge that the system must obey a given constraint equation.

minmax(Xlh,Ylh,Zlh):-

equation(X,Y,Z,Frz),

l_h(Xlh,X), l_h(Ylh,Y), l_h(Zlh,Z),

flat(Frz,Frz1),

freezed(Frz1,Res),

inside(X,Y,Z),

freezed(Res,[]),

ground([X,Y,Z]),

printf(’x: % y: % z: % \n’,[X,Y,Z]),

fail.

l_h(i(L,_),L).

l_h(i(_,H),H).

l_h(i(L,H),X):- L < X, X < H.

equation(X,Y,Z,[Frz1,Frz2]):-

3*Y*Y + 3*X*X + 2*X*Y + 4*Y + 4*X + 3 - Z = 0,

sec_ord(3,2*X+4,3*X*X+4*X+3-Z,Y,Frz1),

sec_ord(3,2*Y+4,3*Y*Y+4*Y+3-Z,X,Frz2).

inside(X,Y,Z):-

Z - 1 > 0,

Y + 3*X + 2 = 0,

6*(2*X + 1)*(2*X + 1) = Z - 1,

(2*X + 1 = pow((Z - 1)/6,0.5)

; 2*X + 1 = -pow((Z -1)/6,0.5)).

inside(X,Y,Z):-

Z - 1 > 0,

3*Y + X + 2 = 0,

6*(2*Y + 1)*(2*Y + 1) = Z - 1,

(2*Y + 1 = pow((Z - 1)/6,0.5)

; 2*Y + 1 = -pow((Z - 1)/6,0.5)).

inside(X,Y,_):- Y + 3*X + 2 = 0, 3*Y + X + 2 = 0.

inside(_,_,_):- abs(Y + 3*X + 2) > 0, abs(3*Y + X + 2) > 0.
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Table 15: Test result of the program in Table 14.

tst:-

Xlh = i(-3,3), Ylh = i(-2,3), Zlh = i(-5,15),

minmax(Xlh,Ylh,Zlh).

3 ?- tst.

x: 1.63299 y: -2 z: 15

x: -1.63299 y: -2 z: 15

x: 0 y: -2 z: 7

x: -1.26376 y: 1.79129 z: 15

x: -2.79129 y: 0.263763 z: 15

x: 1.79129 y: -1.26376 z: 15

x: -0.5 y: -0.5 z: 1

vice versa, but if it is only known e.g. that y + 3x+ 2 = 0 calling equation

is not sufficient. Thus, the first definition of inside gives explicit solution
for the pair of equations y+ 3x+ 2 = 0 and z = 3y2 + 3x2 + 2xy+ 4y+ 4x+ 3
representing the case z = z(x, y) and ∂y

∂x = 0. The second definition of

inside represents the case z = z(x, y) and ∂x
∂y = 0. The third alternative

specifies the case ∂z
∂y = 0 and ∂z

∂x = 0 which determines x and y uniquely. The
last alternative is the case in which (x, y, z) is not on any internal extreme.

The test result in Table 15 is in accordance with what Fig. 16 indicates:
−3 < x < 2, −2 ≤ y ≤ 2, 1 ≤ z ≤ 15.

The above approach can be applied when the constraint equations remain
the same from problem to problem but the limits of the variables change.
This is the case for example when the equations represent a system model
whose parameters as well as the system state change but the basic structure
remains the same.

3.7.1 Proof of the constrained optimization

1. Check that the generator base contains all the actual solu-
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tions.

l h(Xlh,X), l h(Ylh,Y), l h(Zlh,Z) define either a corner, an edge,
a side or the interior of the cube. On backtracking all the alternatives
are generated one by one. The first rule of minmax always fails thus
guaranteeing that all the alternatives will be generated.

2. Check that the constraints do not exclude any solutions.

equation excludes those and only those points which do not satisfy the
constraint equation.

The last four rules of inside cover all the four possible alternatives of
∂z
∂y and ∂z

∂x both vanishing, either or neither of them vanishing. Thus
inside does not exclude any solutions.

ground([X,Y,Z]) is meant to accept only points in the solution space.
An extreme is always a point, but are all the extreme points recognised?
Two things must be checked:

• Do the equations define all the extremes?

– The corners of the cube can be extremes. They are checked.

– There may be extremes on the edges and the sides of the
cube on points were the derivatives of the free variables van-
ish. l h(Xlh,X), l h(Ylh,Y), l h(Zlh,Z) together with
the rules 1, and 2 of predicate inside define such extremes.

– There may be extremes inside the cube on the points where
the derivatives vanish.
Rule 3 of inside defines the point where both ∂z

∂y and ∂z
∂x

vanish.

• Can CLP(R) solve all the equations defining the extremes?

CLP(R) can solve all linear problems. Non-linear equations must
be solved explicitly. From the first line of equation (f(x, y, z) =
0), Z can be solved if X and Y are known. From the second and
third line Y or X can be solved when the other two are known.

In addition it is necessary to give explicit solution to pairs of equa-
tions f(x, y, z) = 0, ∂z

∂x = 0 and f(x, y, z) = 0, ∂z
∂y = 0 because

they constitute a second order equation7. This is done in inside.
Thus CLP(R) can solve all the extremes defined by the equations.

7In this special case ∂z
∂x

= 0⇔ ∂y
∂x

= 0
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3. Check that the constraints exclude all the non-solutions.

Covered above.

4. Check that the computation will end.

There is no recursion. Backtracking l h(Xlh,X), l h(Ylh,Y), l h(Zlh,Z)

can generate at maximum 33 alternatives8 and the solutions to second
order equations generate at maximum two alternatives each.

5. Explain the reason for using assert, retract, cut, if-then-else
structures and other non-logical features.

None used.

6. If dynamic predicates are used, check that they are properly
initialised.

None used.

7. List the special assumptions on e.g. initial instantiation of the
variables.

There are none. If l h(Xlh,X), l h(Ylh,Y), l h(Zlh,Z) does not
define the region under consideration well enough the result is only par-
tially instantiated reflecting thus that the problem is underconstrained.

Summary An approach to construct a CLP(R)-predicate to search ex-
tremes of variables constrained by a set of equations and a set of inequalities
is provided. The approach relies on explicit analytic solutions of partial
derivatives of the variables when searching for local extremes. Such non-
linear constraints which CLP(R) cannot solve, must also be given an explicit
analytic solution or they must be solved with numerical iteration.

8The actual complexity of the computation is strongly problem dependent due to the
use of ‘active constraints’.
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4 THE ISIR-ALGORITHM

In this section the ISIR-algorithm is presented. It is intended to be an in-
ference engine for model-based reasoning which could serve as a kernel of a
tool supporting various tasks related to industrial process plant control and
monitoring.

ISIR is based on the qualitative simulation algorithm QSIM [31] and con-
straint logic programming. But while the original QSIM is based strictly on
symbolic computation, ISIR is restricted to numeric interval computation9.
Later modifications of QSIM can make use of quantitative information to
bind more tightly the results of qualitative simulation. QSIM and its mod-
ifications are based on predefined constraint operations used in the models
while ISIR models are ordinary mathematical equations and the intervals are
determined with mathematical optimization.

Discrete-event simulation and more general analysis of dynamic discrete
systems can be accomplished with Prolog in a straightforward manner. ISIR

provides a method which automatically divides the behaviour of a continuous-
time system into episodes separated by time points at which some signifi-
cant changes occur; for example an increasing signal reaches its maximum or
crosses an important threshold value. Thus, the behaviour of a continuous
time system can be treated as a (branching) sequence of discrete events which
take the system from one discrete state to the next one.

The main features of the ISIR-algorithm are:

• Uncertainty is represented with intervals.

• Continuous-time behaviour is considered a sequence of episodes sepa-
rated by distinguished time points.

• The behaviour implied by the system model is represented as a kind of
envelopes inside which the actual behaviour is guaranteed to lie.

• Both discrete-event and continuous-time systems can be included in the
model.

• A state graph representing the states accessible from an initial state can
be generated. Analysis methods developed for discrete-event systems
can be applied on the state graph.

9Here the term ‘interval computation’ means determination of ranges of the variables,
not the application of any specific interval algebra.
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In the following it is first shown how the ISIR-algorithm can be used to
analyze the behaviour of a continuous-time system controlled by discrete-
event automatics.

Then the problem of model-based reasoning is divided into subtasks which
are discussed separately to introduce the ISIR-algorithm.

It is shown how the same models used by the basic ISIR-algorithm can be
used also in traditional simulation and in solving optimal control problems
so that these methods can be integrated into the basic ISIR-algorithm.

Because the basic ISIR-algorithm is an inference engine it can serve as a
kernel of a tool but alone it is not sufficient in solving practical problems.
Support for plant model generation from plant documentation and generation
of the specifications of the control systems are also discussed in this section
to give an idea of a general-purpose tool based on ISIR.

4.1 ISIR-ALGORITHM IN SHORT

In the following the main characteristics of the ISIR-algorithm and its purpose
are summarised together with the central implementation issues.

ISIR-algorithm is meant to serve as a kernel of a tool to support design
and verification of plant automatics. Verification is accomplished by deduc-
ing from the model of the physical plant and the control system the behaviour
of the overall system and comparing it to operational requirements and re-
strictions. Design is supported by deducing from the model of the physical
plant and the operational requirements and restrictions the required control
actions to be taken.

The basic requirements for the algorithm are the following:

Versatile Problem Solving A support system for a designer or a plant
operator must solve many different types of problems with minor user
intervention.

Handling of Uncertainty Control system design must not be based on the
assumption that an accurate model of the plant is available. Further,
in practice there seldom is an accurate plant model available.

Handling of Hybrid Systems The plant model, the operational require-
ments and the implementation of the control system are of various
nature. There is continuous time dynamics, there is discrete-event dy-
namics, some of the requirements are specified using performance cri-
teria while others are given as logic conditions. The tool must cope
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with all of these. Even if there are other tools to design and tune
PID-controllers they must be taken into account when designing plant
automatics which typically switch on and off such controllers.

Because ISIR can make use of uncertain information represented as inter-
vals design and verification comprise a sort of implicit sensitivity analysis.
Thus, robustness of the design is considered automatically.

The ISIR-algorithm takes as input differential equations describing the
continuous time dynamics of the system. In addition it allows the specifi-
cation of discrete events describing discrete dynamics of the system. It is
also possible to specify conditions which must always be true and conditions
that should never become true. Currently the input must be written using a
Prolog-like language CLP(R).

From the input the ISIR-algorithm generates a state graph representing
an abstract description of the system behaviour. Further it provides some
tools to visualise and make use of the state graph.

In the state graph generation two primitive tasks are encountered: De-
termining system states consistent with the system model and determining
state transitions consistent with the rules of continuity of continuous state
variables and the rules of discrete events given in the system model. ISIR

provides CLP(R)-predicates to solve these two problems. In principle apply-
ing the conjunction of these two predicates recursively gives a state graph as
a result.

There are problems which can be solved without generating the state
graph by utilizing only these low level predicates. The problem of determining
a consistent state is encountered for example when the system state is only
partially specified. It must first be determined if the values assigned for the
variables are consistent with the system model and other constraints of the
system state. If this is the case then all the variables must be determined as
accurate values as possible. For example ẋ ≥ 0, x ≤ 1, 1 ≤ a ≤ 2, u ≤ −1
are consistent with the model equation ẋ = ax + u and it can be further
deduced that x ≥ 1/2, ẋ ≤ 1. Appropriate values for discrete control inputs
like v1 = open must be determined correspondingly. Finding a route for
material transfer can also be considered as a task of determining a consistent
state.

For some dynamic problems it is sufficient to generate only a part of the
state graph or to consider only separate possible transitions.

70



4.2 DISCRETE-EVENT CONTROL OF A CONTINUOUS-
TIME PROCESS

The behaviour of the system in Fig 17 is analyzed in the following to introduce
discrete-event control and to demonstrate the ISIR-algorithm.

Figure 17: Discrete-event control of a storage tank. v1 is opened when the
level reaches the low limit (4) and it is closed when the level reaches the high
limit (9). The outflow is controlled by an external control system. Thus valve
v2 is modelled to open and to close undeterministically.

First an appropriate system specification is constructed. Some significant
values of the system parameters are defined as landmarks.

Table 16: Initial landmarks for the tank level in Fig. 17

qspace(h,[-100,0,4,9,100]).

qspace(_,[-100,0,100]).

qspace(Id, Landmarks)

Id: the identifier of the variable
Landmarks: ordered list of the

landmarks

In the ISIR approach the state space is divided into discrete regions and
the initial landmarks provide a discretization to be completed by the algo-
rithm. 0 is generally a significant threshold value and it is thus defined as a
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landmark value for all the variables. −∞ and∞ are also generally significant
values. However, here −∞ and ∞ would be used only to designate values
outside the normal range of operation, i.e. to designate the ranges h ∈ (9,∞)
and h ∈ (−∞, 0). Thus −∞ and ∞ can be replaced with any values clearly
outside the intended range of operation of the system. In the current system
for example −100 and 100 are clearly outside the normal range of any of the
variables. 4 and 9 are significant threshold values for the level. The quantity
space is specified with a set of predicates qspace as shown in Table 1610.

The system behaviour obeys the equations

Aḣ(t) = f1(t)− f2(t) (6)

f1(t) =

{
1, when v1 = open
0, when v1 = closed

(7)

f2(t) =

{
c
√
h(t), when v2 = open

0, when v2 = closed
(8)

where A is the surface area of the tank (A is assumed constant, independent
of the level). For the ISIR tool the system equation must be written in CLP(R)

using the following conventions:

• The system model is represented as a predicate sys eq

sys eq(XX)

XX: list of state variables and system parameters

• Constants in XX are represented as structures

c(Id,X)

Id: the identifier of the constant
X: the value of the constant

• Discrete variables are represented as structures

dv(Id,X)

Id: the identifier of the variable
X: the value of the variable

• When a point in the state space is determined the values of the vari-
ables and their derivatives are given directly using real numbers. Such
continuous-time variables are represented as structures

10Constraint logic programming language CLP(R) is used in writing the specifications.

72



cv(Id, Magnitude, Derivative)

Id: the identifier of the variable
Magnitude: the magnitude of the variable
Derivative: the value of the time derivative of the variable

• When the values are used to represent a region in the state space, they
must tell the upper and the lower limit of the value or tell that the
variable has a point value (representing an interval of zero length).
Such values of state variables are represented as structures

i(Low, High)

Low: lower limit of the value
High: higher limit of the value

or as a structure

p(X)

X: value of the variable

representing an interval or a point value, respectively.

• Model equations are represented as CLP(R) constraints. Normal Prolog
conventions are used in representing the relations between symbolic
values.

Following the above conventions the system model 6 – 8 can be written
as in Table 17.

Because CLP(R) cannot solve fout from the equation f2out = c2h an explicit
solution fout = c

√
h is given. In general, if f is the only nonlinear constraint

in the model, having both y = f(x) and x = f−1(y) in the model guarantees
that the problem can be solved whichever is known, x or y.

An initial state is specified for the system: c ∈ (0.3, 0.4), h = 9, v1 =
closed, v2 = open.

init([c(c,i(0.3,0.4)),dv(v1,closed), dv(v2,open),cv(h,p(9),_)]).

In the ISIR-algorithm dynamic properties of the system are analyzed by
applying ‘rules’ based on the intermediate value theorem telling how a con-
tinuous time function behaves. For example if 4 < h(ta) < 9 and ḣ(ta) > 0
then at some later time tb > ta it must be either h(tb) = 9 or ḣ(tb) = 0. When
constructing these rules the time axis is assumed to consist of time intervals
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Table 17: ISIR-model of the one tank system in Fig. 17

sys eq([c(c,C),dv(v1,V1), dv(v2,V2),cv(h,H,D H)])

C: coefficient determining the flow through the valve v2
V1: status of the valve v1
V2: status of the valve v2
H: the level of the tank
D H: the time derivative of the level of the tank

sys_eq([c(c,C),dv(v1,V1), dv(v2,V2), cv(h,H,D_H)]):-

10*D_H = F1 - F2, % surface area = 10m2

fin(V1,F1),

fout(C,V2,H,F2).

fin(open,1).

fin(closed,0).

fout(_,closed,_,0).

fout(C,open,H,Fout):- Fout*Fout = C*C*H, Fout = C*pow(H,0.5).

74



separated by time points, at which some significant change occurs for one
or more of the system parameters. Thus, continuous change is represented
with episodes during which the function is smoothly increasing, decreasing
or steady and with significant changes occurring at time points separating
these episodes.

The continuity rules are built into the ISIR-algorithm and they will be
discussed later. The analysis of the continuous change is based on the sys eq

specification which tells the relation between system state variables and their
derivatives.

The discrete control actions taken by the automatics or the operator cause
a significant change thus justifying the current time interval to be broken by
a time point. The discrete control actions have a separate specification. Here
only the control system has discrete dynamics but in general also the plant
can be modelled to have some discrete dynamics. Control actions are as-
sumed to be taken instantaneously at a time point according to the following
specification:

h(t−a ) = 4 =⇒ v1(t
+
a ) = open (9)

h(t−a ) = 9 =⇒ v1(t
+
a ) = closed (10)

4 < h(t−a ) < 9 & v1(t
−
a ) = closed =⇒ v1(t

+
a ) = closed (11)

4 < h(t−a ) < 9 & v1(t
−
a ) = open =⇒ v1(t

+
a ) = open (12)

h(t−a ) < 4 ∨ h(t−a ) > 9 =⇒ ! error ! (13)

The specifications of the transitions of v1 are a straightforward translation
of the logic diagrams in Fig. 17. When the level reaches the value h = 4
valve v1 must be opened, when h = 9 it must be closed. When 4 < h < 9
the valve is left in its current position.

Because ISIR is partially based on the closed world assumption11, the
specification must introduce all the possible characteristics of the behaviour.
Thus, it is necessary to explicitly state something about undesired states

11Closed world assumption means that the relations describing the state of affairs define
explicitly or implicitly everything that can be true. If there are only two definitions for the
relation f, f(a,b) and f(a,c), then under the closed world assumption it can be deduced that
a and d are not in relation f, i.e. f(a,d) is false. Without the closed world assumption the
truth value of f(a,d) could not be deduced. The closed world assumption is often used for
pragmatic reasons. It is important to realize that the closed world assumption does not
require that the model should describe the system behaviour explicitly. However, it means
that an erroneous model may prevent some behaviours from being revealed when using the
current ISIR-prototype.
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as well because otherwise they would be considered inconsistent with the
model. One possibility is to give an error message if the level exceeds the
normal limits12.

The specification d trans in Table 18 simply lists the relations between
the current state of the valve, the condition triggering a transition, and the
new state. For those situations where there is no change the relation tells
that the old and the new values are the same. Such specifications can be
generated automatically from logic diagrams.13

The predicate d trans collects the specifications of the operations of
the valves together. It also specifies which state variables remain unchanged
when the valves are opened and closed and which may change. Because
opening and closing the valves may cause discontinuity in ḣ(t) it is allowed
to experience an abrupt change at time points.

The above specification is sufficient to determine which states the system
can reach from the initial state. Fig. 18 gives one of the outputs of the anal-
ysis obtained with ISIR. It shows the reachability graph of the qualitatively
different states which the system can reach. The longer edges indicate time
intervals and the shorter edges indicate the instantaneous discrete changes.

Fig. 19 is another example of the ISIR-output. It shows a history plot of
the system variables along one of the paths in the reachability graph. Because
currently the ISIR-algorithm computes no estimate for the duration of the
time intervals, the time axis is not in scale and the distance between points
on the time axis gives no indication of the durations or relative durations
of the time intervals. Only the relations ‘before’ and ‘after’ are correct in
the plots. When there are two lines they indicate high and low values of
the parameter.14 On the middle line in every plot there are markers ‘/’,
‘–’ and ‘\’ indicating that the parameter is increasing, steady or decreasing
respectively.

In addition to the plots individual states and state transitions can be
studied in detail. For example the changes occurring at state 7 can be listed.
In Table 19 the left column shows the ‘old’ values and the right column the

12Currently the completeness of the specification is the responsibility of the specifier,
which of course violates the very principle of verification. However, it is simple to make
a separate tool which checks the completeness of the specification. For example, the left
hand side of the above specification must cover both the cases where the valve is either
open or closed for all the values of h.

13Automatic generation of such specifications is not implemented in ISIR.
14Actually the high and low values at the time points are simply connected with straight

lines or second order curves. So the plots do not represent accurately the envelopes of the
actual behaviours.
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Table 18: ISIR-specification of the discrete transitions in 9 – 13

d_trans([C0,U10,U20,cv(h,H0,_)],[C0,U1,U2,cv(h,H0,_)],

[_,U1_tr,U2_tr,_]):-

v1_tr(cv(h,H0,_),U10,U1, U1_tr), v2_tr(U20,U2,U2_tr).

v1_tr(cv(h,p(4),_),_,dv(v1,open),bb).

v1_tr(cv(h,p(9),_),_,dv(v1,closed),cc).

v1_tr(cv(h,i(L,H),_),V1,V1,aa):- 4 <= L, H <= 9.

v1_tr(cv(h,p(X),_),V1,V1,aa):- 4 < X, X < 9.

v1_tr(cv(h,i(L,H),_),V1,V1,aa):-

(L < 4; H > 9), writeln(’level exceeded’).

v1_tr(cv(h,p(X),_),V1,V1,aa):-

(4 > X; X > 9), writeln(’level exceeded’).

v2_tr(dv(v2,open),dv(v2,closed),bb).

v2_tr(dv(v2,closed),dv(v2,open),cc).

v2_tr(V2,V2,aa).
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Figure 18: The state graph of the behaviour of the system in figure 17.
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Figure 19: One path in the state graph in Fig. 18.
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‘new’ values of the system state variables. The signs ‘=’, ‘m’ and ‘d’ in the
middle column tell if the variable remains unchanged, if its magnitude (and
maybe derivative) is changed or if only its derivative is changed.

Table 19: Transitions 7→ 8,7→ 9 and 7→ 10 in the graph in Fig. 18

7 (p1) -> 8 (p0)

Id magnitude derivative -> magnitude derivative

c: 0.3 - 0.4 0 m 0.333 - 0.4 0

v1: open 0 = open 0

v2: closed 0 m open 0

h: 4 - 9 0.1 m 6.25 - 9 -0.02 - 0

7 (p1) -> 9 (p0)

Id magnitude derivative -> magnitude derivative

c: 0.3 - 0.4 0 = 0.3 - 0.4 0

v1: open 0 = open 0

v2: closed 0 m open 0

h: 4 - 9 0.1 d 4 - 9 0 - 0.04

7 (p1) -> 10 (p0)

Id magnitude derivative -> magnitude derivative

c: 0.3 - 0.4 0 m 0.333 - 0.4 0

v1: open 0 = open 0

v2: closed 0 m open 0

h: 4 - 9 0.1 m 6.25 - 9 0

Table 19 tells that when 4 < h < 9 and v1 is open then opening v2 may
result in the level either increasing, decreasing or becoming steady, depending
on the value of the parameter c. It also shows that only when the level is
high enough is it possible that inflow is smaller than outflow when both of
the valves are open.

In the previous analysis the constant parameter c has been allowed to
obtain a smaller range of uncertainty during the prediction of the behaviour.
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This is justified as the predicted behaviour, the level not increasing, is possible
only if the parameter c is large enough. However, it depends on the problem
to be solved whether narrowing the range of constants is desired or not. ISIR

can be modified to treat the constants in a desired way. Whichever option
is chosen, ISIR will always consider the possibility that the minimum or the
maximum of some of the variables is not obtained at the limits of constant
parameters.

Some analysis could be based on conventional quantitative simulation.
However, here the goal is to find all the significantly (qualitatively) different
behaviours, and the results of the analysis are meant to be used in automated
reasoning. To find all the significantly different behaviours or accessible states
with simulation only would require complex computations. Because the valve
parameter c is not known exactly, some kind of Monte Carlo simulation
would be necessary. Because the timing of the operation of the valve v2 is
not known, it should be opened and closed at random intervals during the
simulation requiring a lot of computation and still falling short of giving full
guarantee that all the possible behaviours are revealed. The 37 states and the
transitions between them can be used more efficiently in automated problem
solving than the data generated by Monte Carlo simulation.

Although in this example the future behaviour is predicted when the
control algorithm is specified, very often it is necessary to do the opposite,
find control actions which result in a satisfactory plant behaviour.15

Altogether it is evident that much of the analysis and synthesis of discrete-
event control is logic reasoning and that it is sufficient to know whether the
tank level is between the limits 4 and 9, above 9 or below 4 and whether it
is increasing, decreasing or steady. For example when the level is increasing,
nothing interesting happens until the level h = 9 is reached or the states of
valves are changed. Thus, it is unnecessary to predict the behaviour of the
level in any more detail between those events.

In general it is not important to know what the rates of change are but in
which order the significant events may occur. For example to predict how long
it takes to fill a tank actually requires exact knowledge on the characteristics
of the liquid, of the valves etc. Control strategy based on such an exact
model may lack robustness. System time constants and consequently the

15It is important to notice the difference between the nature of
• stabilizing continuous-time control like PID-control and optimal control;
• discrete-event control strategies like automatics, operating procedures, interlocks

and protections.
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order of the occurrence of some critical events may change when a valve is
changed, the characteristics of the liquid change, or the control sequence is
initiated when there is some liquid left in the tank. To guarantee robustness
the design must be based on ranges of system parameters, not on one single
set of parameters.

4.2.1 Analysis of the reachability graph

The output presented in the previous section is produced for visualisation
of the behaviour of the system. However, the mechanised problem solving
applied in the analysis and synthesis of the control systems is more important.
Some simple examples on using the state graph are given, although many
problems can be solved also without generating the whole state graph.

Table 20: Part of the state graph of Fig. 18

st(p0,0,[c(c,i(0.3,0.4)), dv(v1,closed), dv(v2,open),

cv(h,p(9),i(-0.12,-0.09))]).

st(p1,1,[c(c,i(0.3,0.4)), dv(v1,closed), dv(v2,open),

cv(h,i(4,9),i(-0.12,-0.06))]).

st(p0,2,[c(c,i(0.3,0.4)), dv(v1,closed), dv(v2,closed),

cv(h,i(4,9),p(0))]).

st(p1,3,[c(c,i(0.3,0.4)), dv(v1,closed), dv(v2,closed),

cv(h,i(4,9),p(0))]).

. . .

tr(0, 1).

tr(1, 2).

tr(2, 3).

tr(3, 4).

tr(4, 5).

. . .

The reachability graph is stored in a file as a set of Prolog predicates.
Predicates
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st(TpTi,No, XX)

TpTi: time index telling the start points of episodes form the
end points

No: id. number of the state
XX: system state as a list of state variables

specify the states while predicates

tr(X, Next X)

X: Id. number of a state
next X: Id. number of the successor of X

specify the transitions. Table 20 shows part of the graph in Fig. 18.
Thus, the graph is a Prolog program and it can be analyzed in a straight-

forward manner. In principle the truth value of any temporal logic theorem
can be checked. As a simple example it is possible to search for the states
which have no successors.16 The predicate dead end in Table 21 goes through
the state graph and reports all the states which have no successors. Most
systems should have a cyclic behaviour and thus dead-ends can be considered
as indications of an error either in the model or in the system design.

As another example, it is possible to search for situations where both the
valves are open and the level still remains stable, see Table 22

4.2.2 Synthesis of a control sequence

In the previous example the control sequence of Fig. 17 was verified. Very
much the same approach can be used to support the synthesis of a control
sequence. Instead of specifying the conditions under which the valve v1 should
be operated, the conditions that should be true can be specified as show
in 23 The discrete transition of Table 18 is divided into two simultaneous
transitions from which d1 trans represents the control actions. The only
variables that are allowed to change are U10 → U1 and D H0 → D H. (I.e.
input valve can be manipulated with a possible result of the derivative of
the tank level obtaining a new value. Further, the valve is allowed to change
status only when the level is H ≥ 9 or H ≤ 4. In those cases it is required
that the derivative of the tank level is such that the level is moving towards
the acceptable region. When v2 is open the level decreases even when v1 is
open. This is acceptable but to get a better result it is further required that

16Dead-lock in a discrete-event system is a typical example of such a state.
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Table 21: A predicate to check a graph for dead-ends.

dead_end:-

st(_,B,_), % there is a state B

(tr(B,_) % if there is a transition further

-> fail % then reject B

; format(’~w; ’,[B])), % else report a dead-end

fail. % backtrack for all other states

Dead-ends in the graph can be listed simply by calling dead end:

| ?- dead_end.

no

Table 22: Searching for steady states in a state graph.

stable:-

st(_,B,[c(c,C),dv(v1,open), dv(v2,open),cv(h,H,p(0))]),

format(’state: ~w c: ~w h: ~w~n ’,[B,C,H]),

fail.

?- stable.

state: 10 c: i(0.333333,0.4) h: i(6.25,9)

state: 11 c: i(0.333333,0.4) h: i(6.25,9)

no
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Table 23: Specifying the control requirements to allow the synthesis of the
control sequence.

d1_trans([C0,U10,U20,cv(h,H0,D_H0)],[C0,U1,U20,cv(h,H0,D_H)],

[_,_,_,_]):-

control(H0,D_H0,D_H,U10,U1).

control(H0,D0,D1,_,_):- gte(H0,p(9)), !, zerneg(D1), gte(D0,D1).

control(H0,D0,D1,_,_):- gte(p(4),H0), !, zerpos(D1), gte(D1,D0).

control(_,_,_,X,X).

gte(p(X),p(Y)):- X >= Y.

gte(i(X,_),i(Y,_)):- X >= Y.

gte(i(X,_),p(Y)):- X >= Y.

gte(p(X),i(_,Y)):- X >= Y.

zerneg(p(X)):- X <= 0.

zerneg(i(_,H)):- H <= 0.

zerpos(p(X)):- X >= 0.

zerpos(i(_,H)):- H >= 0.
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if the status of v1 is changed the change must result in the level moving faster
towards the desired region.

The program in Table 24 can be applied on the resulting state graph to
identify the conditions under which the control actions are needed.

Table 24: A program to support the synthesis of a control sequence. All
the sequences of state transitions A → B → C where B → C is a discrete
transition are analysed. When a discrete transition with a control action is
detected, the corresponding change of the system state variables is printed out
together with the specification of the control action, see Table 25.

synth:-

st(p1,B,Sb),

tr(B,C),

st(p0,C,Sc),

action(Sb,Sc,Str),

tr(A,B),

st(p0,A,Sa),

nl,

wr_synth(Sa,Sb,Str),

fail.

action([_,dv(v1,V1b),_,_],[_,dv(v1,V1c),_,_],(V1b,V1c)):-

dif(V1b,V1c).

wr_synth([_,_,_,Ha],[_,_,_,Hb],(V1b,V1c)):-

write(Ha),write(’ -> ’), write(Hb),write(’: ’),

write(V1b), write(’ -> ’), write(V1c),nl.

The result in Table 25 can be used to help in constructing the control
sequence: The valve must be opened when the level reaches the low limit
and it must be closed when the level reaches the high limit.
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Table 25: The result of the synthesis of the control sequence.

| ?- synth.

cv(h,i(4,9),i(-0.12,-0.06))

-> cv(h,p(4),i(-0.08,-0.06)): closed -> open

cv(h,i(4,9),i(-0.12,-0.06))

-> cv(h,p(4),i(-0.08,-0.06)): closed -> open

cv(h,i(6.25,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

cv(h,i(4,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

cv(h,i(6.25,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

cv(h,i(4,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

cv(h,i(4,9),i(-0.12,-0.0667))

-> cv(h,p(4),i(-0.08,-0.0667)): closed -> open

cv(h,i(4,9),i(-0.12,-0.0667))

-> cv(h,p(4),i(-0.08,-0.0667)): closed -> open

cv(h,i(4,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

cv(h,i(4,9),p(0.1))

-> cv(h,p(9),p(0.1)): open -> closed

no

| ?-
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4.2.3 Control requirements specified with a state automaton

Figure 20: Control requirements specified using a state automaton. The tank
is used as a measurement device to be emptied when demanded and to be filled
automatically after becoming empty. The main characteristics of the desired
behaviour are presented in the way most natural for the process designer. It
is left for the control system designer to fill in the details and check against
contradictions.

It is common to specify the control requirements with a state automaton
sketching the desired behaviour of the overall system as shown in Fig. 20.
The specification of the systems and the control requirements are given in
Table 26.

The resulting behaviour can be seen in Fig. 21.

4.2.4 Proportional control of the tank level

Because the discrete-event control system often manipulates the stabilazing
continuous-time controllers ISIR must handle such systems properly. If valve
v1 is a control valve the discrete feedback of the previous example can be
replaced with continuous feedback control as shown in Fig. 22.

In the example it is assumed that there are two modes of operation, one
having the controller setpoint at 6m and the other having the setpoint at
4m. A different feedback coefficient is also used. The mode of operation is
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Table 26: A part of the ISIR-specification of the system in Fig. 20.

sys_eq([dv(stp,Stp),c(c,C), dv(v1,V1),

dv(v2,V2),cv(h,H,D_H)],_,[]):-

10*D_H = Fin - Fout, % surface area = 10m2

fin(V1,Fin), fout(C,V2,H,Fout),

control(Stp,Fout,D_H),

legal_v(V1,V2).

/* the conditions which should be true in all states */

control(1,0,0). % Rest state

control(2,Fout,_):- % Liquid has been demanded.

Fout > 0. % There must be outflow

control(3,0,0). % Wait to be sure that only one valve is

open

control(4,_,D_H):- D_H > 0. % Fill the tank

legal_v(closed,closed).

legal_v(closed,open). % Never open both valves simultaneuously

legal_v(open,closed).

/* Some mechanistic work is needed to make the following less

awkward.

There are often two alternatives: no change or jump to the next

step.

The tank level determines the jumps, or it occurs

spontaneously, or it is forced to take place.*/

d_trans([dv(stp,1)|S], [dv(stp,1)|S],_).

d_trans([dv(stp,1),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(9),_)],

[dv(stp,2),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(9),_)],_).

d_trans([dv(stp,2),c(c,C),dv(v1,_), dv(v2,_),cv(h,i(L,H),_)],

[dv(stp,2),c(c,C),dv(v1,_), dv(v2,_),cv(h,i(L,H),_)],_):- H

> 4.

d_trans([dv(stp,2),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(4),_)],

[dv(stp,3),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(4),_)],_).

d_trans([dv(stp,3),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(4),_)],

[dv(stp,4),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(4),_)],_).

d_trans([dv(stp,4),c(c,C),dv(v1,_), dv(v2,_),cv(h,i(L,H),_)],

[dv(stp,4),c(c,C),dv(v1,_), dv(v2,_),cv(h,i(L,H),_)],_):- L

< 9.

d_trans([dv(stp,4),c(c,C),dv(v1,_), dv(v2,_),cv(h,_,_)],

[dv(stp,1),c(c,C),dv(v1,_), dv(v2,_),cv(h,p(9),_)],_).
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Figure 21: The state transitions of the system of Table 26.
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Figure 22: Proportional control of a storage tank. There are two modes of
operation with different reference values and tuning parameters. Change of
mode of operation can be conducted when the level is stable and valve v2 is
closed. The outflow is controlled by an external control system. Thus valve
v2 is modelled to open and close undeterministically.

assumed to be changed by the operator only when the valve v2 is closed and
the level has stabilized to its reference.

To take into account the saturation of the controller — negative inflow is
not allowed — the system specification is divided into two as shown in Table
27. Fig. 23 shows the state graph generated with the specification when the
depth of the graph is limited. Fig. 24 shows that the proportional controller
takes the level exactly into the reference when there is no outflow, otherwise
there is a deviation but the level is always kept between the acceptable limits.

Summary Because there are discrete features in process plant control-
strategies, techniques of discrete mathematics used e.g. in computerscience
can be applied. However, they fall short in treating continuous time systems.
Qualitative modelling provides many principles on how to fill this gap, but
they must be modified to suit for solving control problems. Logic program-
ming and especially constraint logic programming languages seem to be the
best choice to implement tools required in the analysis and design of such
systems.
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Table 27: Model of the system in Fig. 22

sys_eq([c(c,C), dv(moodi,Moodi), dv(v2,V2),cv(h,H,D_H)],_,Frz):-

fin(Moodi,K,R), R >= H,

10*D_H = K*(R-H) - C*V2*pow(H,0.5),

sec_ord(K,C*V2,10*D_H-K*R,Z,Frz),

Z*Z = H.

sys_eq([c(c,C), dv(moodi,Moodi), dv(v2,V2),cv(h,H,D_H)],_,[]):-

fin(Moodi,_,R), R < H,

10*D_H = -C*V2*pow(H,0.5),

(V2 > 0 -> H = pow(-10*D_H/C/V2,2); true).

fin(upper,0.2,6).

fin(lower,0.25,4).

d_trans([C0,U10,U20,cv(h,H0,_)],[C0,U1,U2,cv(h,H0,_)],

[_,U1_tr,U2_tr,_]):-

mode_tr(cv(h,H0,_),U20,U10,U1, U1_tr), v2_tr(U20,U2,U2_tr).

mode_tr(_,_,Moodi,Moodi,aa).

mode_tr(cv(h,p(6),p(0)),dv(_,0),dv(moodi,upper),

dv(moodi,lower),ba).

v2_tr(V2,V2,aa).

v2_tr(dv(v2,1),dv(v2,0),ba).

v2_tr(dv(v2,0),dv(v2,1),ab).
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Figure 23: The state graph of the behaviour of the system in figure 22.
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Figure 24: One path in the state graph in Fig. 23.
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4.3 SUBTASKS IN MODEL-BASED REASONING

The ISIR-algorithm is implemented with the constrain-and-generate approach
which allows describing the problem domain as a set of generators defining the
problem space and as a set of constraints differentiating acceptable solutions
from unacceptable ones. Reasoning based on a plant model is divided into
implementing the following relations:

consistent state: System model is represented as

ẋ(t) = f(x,u,θ) (14)

p(z) = true (15)

Relation ‘consistent state’ checks that the values of the variables are
always consistent with the model. It also solves the unknowns as well
as possible.

17

Mathematically this is a constraint solving problem where the con-
straints — mathematic equations and inequalities and logic axioms —
tell the relationships between the system variables.

Determining a consistent state can be used as such to solve some low-
level problems like: “How to make the temperature Ta increase?”; “how
to make the steam flow from tank A to tank B?”; “is it possible that
level hA is decreasing although valve V3 is closed or has some fault
occurred?”

consistent transition of a variable: There are two kinds of transitions,

x(t+0 )→ x(t−1 ): the evolution of the continuous time variables during
an episode;

z(t−1 )→ z(t+1 ): Instantaneous discrete changes; for example an auto-
matic control sequence taking a step. Discrete changes may also
change the derivatives of the continuous time variables.

Possible transitions of a variable are determined or it is checked that a
given transition is in accordance with the related constraints.

17In Fig. 10 this task corresponds to determining which values of x, v, ẋ and v̇ are
consistent in any of the states.
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consistent state transition: Determine transitions of the system state which
are consistent with the system model and the additional constraints.
This is accomplished by applying the conjunction of the above two
relations.

of the pairs of each

variables are constraint. For discrete given directly

behaviours: Applying recursively the above gives a state graph representing
all the possible behaviours of the system.

behaviour. required to transition a state

Having the state graph it is possible to solve problems like “how to take
the plant into a state which satisfies the following conditions: . . . ?”.
At this level some principles of modal logic or temporal logic must be
adopted in reasoning.

planning: The above state and transition constraints can be used as the
domain model in solving various planning problems. In planning it is
in addition necessary to have the specification of the goal of operation.

verification: Verification of the plant automatics can be based on the above.
For example as a brute force approach a complete state graph repre-
senting the behaviours can be generated and searched for undesired
properties.

In the following the above is discussed in more detail. Algorithms in
Prolog and CLP(R) are used to illustrate the central parts of a principal so-
lution to the reasoning problem. However, not all of those pieces of programs
correspond exactly to the actual ISIR-algorithm.

4.3.1 Consistent states

At any time point or during any time interval the value of any variable or its
derivative is either known, unknown or partially known. For example, real-
valued variables may be constrained into an interval, and discrete variables
may be constrained in having a small set of alternative values. One of the
low-level problems is to solve some of the variables when others are (partially)
known. For continuous-time variables also the direction of change must be
determined.
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Part of the model is represented as logic axioms. Problems related to
this part can be solved with mechanised logic reasoning as implemented for
example in the programming language Prolog. The rest of the model contains
mathematical equations and inequalities. Because ISIR is implemented in
CLP(R) it can directly solve mixed logic-numeric problems.

Often the values of the variables and model parameters can be given
as numerical intervals and the relationships between them as mathematical
equations. Then the smallest hypercube in the state space which contains
all the possible solutions to the model equations can be considered as a
state consistent with the constraints. Determining such a hypercube is an
optimisation problem:

f(x) = 0 & li < xi < hi ; i = 1, n

min (xj) = ? max (xj) = ? ; j = 1, n (16)

When f(x) is linear, the problem can be solved with linear programming.
Because typically f(x) is nonlinear, an algorithm to solve nonlinear problems
is developed. The algorithm shown in Table 28 directly applies the principles
presented in section 3.7. A predicate f(X) is needed to implement f(x) = 0
and predicate corners(LH,X) is needed to give the values

xi :


xi = li
xi = hi
li < xi < hi

i = 1..n

for all the xi one by one. The predicate local extrem is used to determine
local extremes, e.g. the points where partial derivatives of any of the variables
vanish. Finally, it is necessary to search for the minimum and the maximum
of each variable18.

It is also checked that there is an interior point in the region which satisfies
the equation constraints. This is done for efficiency reasons to check if there
is inside the region a point which satisfies the given conditions before starting
to search the borders of that region. The other reason is that the predicate
extrema may succeed in finding the borders of a region even though there is
not a single point satisfying the conditions inside the region.

The interior point is searched with a predicate similar to extrema but
the predicate corners(X,LHa) is replaced with the predicate interior -

18The piece of code in Table 28 is a slightly simplified version of the actual ISIR-
algorithm, but it correctly reflects the actual principle.
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Table 28: A solution algorithm for interval constraint problems.

extrema(LHa,LHb):-

tell(’tmp.tmp’),

f(X),

low_high(closed,X,LHa),

corners(X, LHa),

local_extrem(X),

ground(X),

printf(’xx(%).\n’,[X]),

fail.

extrema(LHa,LHb):-

told,

see(’tmp.tmp’),

search_limits(’tmp.tmp’, LHb).

point(X, LHa) giving X the following alternative values

xi :

{
xi = 0.5 ∗ (li + hi)
li < xi < hi

i = 1..n (17)

until a solution to the system equation is found.

Choosing the state variables The state vector is defined to be the set
of variables which, together with the external input vector, gives all the
information necessary to determine the future behaviour of the system. For
example, the system equation for a mass-spring system with friction can be
written as ẋ(t) = v(t), v̇(t) = −c1x(t) − c2v(t). The state variables are x
and v which uniquely determine the direction of the change at any point in
the x, v plane and thus are sufficient to determine the future of the system.
However, in ISIR the state is typically defined, like for example x > 0, v < 0.
Then it is not even known whether v̇ > 0, v̇ < 0, or v̇ = 0 which indicates
that it is useful to include v̇ into the state vector. This is why in ISIR (and
also in QSIM) the derivatives of the state variables are included into the state
vector19.

19For example in QSIM all the variables used in the constraints in the model are treated
as state variables, and due to operations mainly on triples and pairs, this results in all the
intermediate variables to be included into the state vector. In ISIR this is not the case: In
complex models not all the intermediate results are explicitly computed. ISIR-models can
be given a modular structure so that it may be difficult to pass all the intermediate results
from all the subroutines and functions used in modelling.
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In the above case it is useful to take also the second derivative of a variable
into the state vector. (In the above example that would occur automatically
in QSIM).

For the problems encountered when applying the ISIR-algorithm, it is use-
ful to discretize the state space so that the zeroes of the gradients, ∂xi/∂xj =
0; i 6= j, lie outside or on the borders of the region under consideration.
When ∂xi/∂xj = xk, the region can be divided into three; S1, S2 and S3,
so that x ∈ S1 → xk < 0, x ∈ S2 → xk = 0 and x ∈ S3 → xk > 0. If
∂xi/∂xj = h(xsub),where xsub is a subvector of x with dimension higher than
one, then an auxiliary variable zij = h(x) is used.

However, ISIR can also handle cases where there are extrema inside the re-
gion under consideration. Thus the above is not necessary but may sometimes
help in pruning the solution space during the synthesis of the behaviours of
the system.

Figure 25: Additional state variables r = x2+y2, z1(t) = ẋ(t) and z2(t) = ẏ(t)

Auxiliary variables other than the derivatives can also be included into the
state vector. When using real values a sum of n independent vectors spans an
n-dimensional space. However, when using intervals the situation is different
as shown in Fig. 25. On a two-dimensional rectangular coordinate system
intervals of the coordinates define a rectangle. If only the signs of the deriva-
tives are taken into account nine directions {(ẋ, ẏ) | (ẋ < 0 ∨ ẋ = 0 ∨ ẋ > 0), (ẏ < 0 ∨ ẏ = 0 ∨ ẏ > 0)}
can be distinguished. Additional variables, like r = x2 + y2 can be used to
tighten the division of the state space and the possible directions of change.
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Additional auxiliary variables do not help in pruning the behaviours if
there are no additional constraints on the auxiliary variables. For example,
making energy an additional state variable does not as such help in pruning
the behaviours. But if it is possible to say something about the conservation
of energy this will constrain the behaviours.

4.3.2 Consistent change of continuous functions

Figure 26: Some possible behaviours of a continuous function.

The first step in analyzing the dynamics of the model in terms of the
discrete-event paradigm is to determine possible state transitions from one
state to the next one. To do this the possible changes of the variables must
be defined. For discrete variables such an accessibility relation can be deter-
mined directly in cases typically encountered in plant automatics, because it
is possible to list one by one the possible changes of the individual variables
and the preconditions for those changes.

For discretized continuous-time variables, the changes in the values oc-
cur when crossing some significant limits or when the sign of the derivative
changes. The behaviour of a continuous time function x(t) between two sig-
nificant time points ta and tb can be characterised using the values of the
function and sign of its derivative at the end points t = ta and t = tb of
the time period if it is assumed that neither the first nor the second order
derivative change sign during the period. Fig. 26 shows the division of the
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system behaviour into episodes according the the signs of the first oerder
derivatives only.

Fig. 27 shows three of the seven alternative shapes of a continuous time
function between two significant time points. The fourth is the steady be-
haviour and the three remaining are the decreasing counterparts of the in-
creasing ones.

Figure 27: Some possible behaviours of a continuous function.

inc3 and inc4 represent any curve x(t) with ẋ(a) > 0 and ẋ(b) > 0.
The cases inc4 x(b) = xh(b) and inc3 x(b) < xh(b) are handled separately.
The first case indicates a significant event justifying a new time point while
the second does not.

Intermediate value theorem of equation 18 can be used in writing con-
straint equations defining the different possible shapes of the functions during
an episode.
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∫ b

a
ẋ(τ)dτ = x(b)− x(a) = ẋ(ξ)(b− a) (18)

Equation 19 is a constraint telling if the function x(t) can have a behaviour
of the type inc1 between time instants t = a and t = b. Constraint 20 tells
the range of possible values for x(b) including the upper and the lower limit
of the range. 19 is used to check if an episode of type inc1 is possible and
20 is used in constraining the acceptable values of x(b).

inc1(x)← ∃(x(a), x(ξ), x(b))

(xl(a) < x(a) < xh(a), ẋ(a) = 0, ẍ(a) > 0,

x(a) < x(ξ) < x(b) ≤ xh(b), 0 < ẋ(ξ) < ẋ(b)) (19)

∀(x(b)(inc1(x)← ∃(x(a), x(ξ))

(xl(a) ≤ x(a) ≤ xh(a), x(a) ≤ x(ξ) ≤ x(b) ≤ xh(b),

0 ≤ ẋ(ξ) ≤ ẋ(b))) (20)

where xl(t) and xh(t) are the prior upper and lower limit of x(t).
Equations 21 and 22 are corresponding constraints for the episodes of the

type inc2.

inc1(x)← ∃(x(a), x(ξ), x(b))

(xl(a) < x(a) < xh(a), x(a) < x(ξ) < x(b) ≤ xh(b),

ẋ(a) > ẋ(ξ) > ẋ(b) = 0, ẍ(b) ≤ 0) (21)

∀(x(b)(inc1(x)← ∃(x(a), x(ξ))

(xl(a) ≤ x(a) ≤ xh(a), x(a) ≤ x(ξ) ≤ x(b) ≤ xh(b),

ẋ(a) ≥ ẋ(ξ) ≥ ẋ(b)) = 0) (22)

The second order derivative ẍ(a) or ẍ(b) is used only at points where the
first order derivative vanishes, for example at the beginning of an episode
of type inc1 or at the end of an episode of type inc2. The condition
ẍ(b) ≤ 0 in the equation 21 is not strictly in accordance with the properties
of continuous functions. The equality allows asymptotic approach of a stable
behaviour to be treated as if it occurs in a finite time. If needed, the two
cases reaching a turning point and asymptotic approach to a stable point,
can be separated.

The algorithms in the previous section are used to determine the con-
straints for the upper and the lower limit of x(b). Table 29 shows as an ex-
ample how the transition constraint of equation 19 is actually implemented.
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Table 29: Implementation of the transitions rules 19

tr(TrCode,Xa, LHa, X, LH, Xb, LHb, DDa, DDb)

TrCode: One of the strings std, inc1, inc2, inc3, inc4, dec1,

dec2, dec3, dec4 telling the shape of the curve
Xa: x(t) at t = a
LHa: The limits xl(t) and xh(t) at t = a
X: x(t) at t = ξ
LH: The limits xl(t) and xh(t) at t = ξ
Xb: x(t) at t = b
LHb: The limits xl(t) and xh(t) at t = b
DDa, DDb: ẍ(a) and ẍ(b)

tr(inc1,cv(Id,Xa,0),cv(Id,i(La,_),p(0)),

cv(Id,X,DX),cv(Id,i(Xa,Xb),i(0,DXb)),

cv(Id, Xb, DXb), cv(Id, i(La, Hb), i(0,#inf)), DDa,_):-

upper(Id,La,Hb),

Xa < X, X < Xb, Xb <= Hb,

DX > 0, DXb > DX,

DDa > 0.

upper(Id,X,H)

Id: The identifier of the variable
X: The value of the variable
H: The nearest landmark of Id, for which X < H.
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Proof of the Treatment of Continuous Change Equation 19 is first
discussed. Initially xl(a), xh(a) and xh(b) are known. They form the gener-
ator base in this case.

According to intermediate value theorem 18 any smooth continuous func-
tion must satisfy the conditions given by the equation 18.

Thus 19 does not exclude any possible behaviour with the given initial
conditions. Because there are alternative definitions for other initial condi-
tions and other shapes of curves as well, no possible alternative is excluded.
20 does not exclude any possible solution.

However, it is not guaranteed, that all the impossible behaviours are
excluded.

4.3.3 Consistent state transitions

Combining the constraints for a consistent state and those for consistent
transitions of individual transitions results in a definition of a consistent
state transition.

Consistent state transitions are determined with the same principle as
when solving consistent states but now the state variables are loaded with
additional transition constraints. The algorithm is presented in Table 30.
The current state ( LHa) represents a region, a hypercube, in the state space.
In effect ISIR computes points ( Xb) in the state space which obey the con-
ditions determined by the definitions of the transitions for all the continuous
variables ( trans) in addition to the conditions determining the mutual re-
lations of the variables at the beginning, at the end and during the episode (
f(Xa,DDa), f(X, ), f(Xb,DDb)). These points are classified according to
the transition labels ( TrC) to separate qualitatively different transitions. For
all such classes of transitions the upper and lower limits of the variables and
their derivatives ( LHb) are searched.

In transitions effective use is made of stepwise constraining of the
solution to reduce backtracking and thus the complexity of the algorithm20.
low high(open,Xa,LHa) constrains initial state x(a) so that xil(a) < xi(a) <
xih . f(Xa,DDa), f(X, ), f(Xb,DDb) constrain x(a), x(t) and x(b), a <
t < b to obey the system equations. trans calls recursively tr introduced
in the previous section to make all the continuous state variables in x(a), x(t)
and x(b) obey the continuity rules. Then the two calls to low high instan-
tiate the variables in the state vectors x(t) and x(b) to either the upper or

20The actual algorithm is slightly more complex and somewhat different.
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Table 30: The algorithm to determine consistent state transitions.

transitions(LHa,LHb):-

tell(’tmp.tmp’),

low_high(open,Xa,LHa),

f(Xa,DDa), f(X,_), f(Xb,DDb),

trans(TrC,Xa,LHa,X,LH,Xb,LHb,DDa,DDb),

low_high(closed,Xb,LHb),

low_high(closed,X,LH),

local_extrem(Xb),

once(local_extrem(Xa),

interior_point(Xb),

interior_point(Xa),

interior_point(X),

ground([Xa,X,Xb])),

printf(’xx(%,%).\n’,[Xb,TrC]),

fail.

transitions(LHa,LHb):-

see(’tmp.tmp’),

%search for the minimum and the maximum of each of

%the state variables for each of the transition codes

105



lower limit determined by trans or they are constrained in the open interval
between the upper and the lower limit. local extrem(Xb) instantiates x(b)
into a local extrem of f(x) in case x(b) is not yet ground. Finally, points x(a)
and x(t) which satisfy all the constraints are searched for.

The predicate transitions gives as les in every category must be de-
termined. The classification is done simply according to the transition codes
provided by the trans-predicate. Discussing the implementation of this part
of the ISIR-algorithm is beyond the scope of this report.

The verification procedure proposed in section 3.2 reveals no errors21:

1. Check that the generator base contains all the actual solu-
tions.

The predicate trans calls recursively the continuity constraint tr

giving a priori upper or lower limit for each xi(b) depending on the
shape of the episode. tr provides definitions for all the possible
shapes.

low high tries to instantiate each of the variables in turn into one of
the values x(t) = xl(t), x(t) = xh(t), xl(t) < x(t) < xh(t) thus going
through all the corners of the allowable space. local extrem tries to
instantiate the state into a value where any of the partial derivatives
vanish. interior point gives a value for the remaining uninstantiated
variables. Thus all the possible extremes of x(b) are included.

2. Check that the constraints do not exclude any solutions.

low high(X,LH) Constrains the state vector X to lie in the closed re-
gion LH. Thus it does not exclude any solution.

f(X,DD) Because predicate f is the model equation it defines what the
solution is. However, if there are nonlinearities in the equations,
it may happen that the modeller fails to write such an explicit
solution to the equation as to instantiate the variables sufficiently.
Even in such a case no solution is actually excluded, but some are
not identified, giving the same incorrect result.

trans Discussed earlier.

interior point Discussed earlier.

local extrem Discussed earlier.

21Only the top level of the algorithm is discussed here.
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3. Check that the constraints exclude all the non-solutions.

f is part of the definition of the solutions. trans may generate some
superfluous transitions. Thus ISIR, as QSIM, may generate superfluous
solutions. This is due to the way the transition rules deal with the
continuous change of interval variables.

4. Check that the computation will end.

The computation will end if f and trans give only a finite number
of alternatives. f is mainly a set of equations and trans is checked
both manually and through various tests to give only a finite number
of solutions.

5. Explain the reason of using assert, retract, cut, if-then-else
structures and other non-logical features.

The resulting points are written in a file. (Could be asserted as well).
This is because generate-and-fail approach is used for efficiency reasons.

6. If dynamic predicates are used, check that they are properly
initialised.

None used.

7. List the special assumptions on e.g. initial instantiation of the
variables.

The current state, LH0, must be fully instantiated, because the algo-
rithm is based on distinguishing the extremes by checking if the state
is ground.

Employing numerical integration The predicate tr which gives the
continuity rules defines partially initial and final values for the continuous
state variables and their derivatives. In addition it requires that the derivative
of the variable must have the same sign during the whole episode. The
predicate trans called in transitions applies tr on all the continuous state
variables. The objective is to find minimum and maximum value for each
xi(b) under all the constraints. This is a two-point boundary value problem
which can be solved using numerical integration instead of the algorithm in
Table 30 as will be shown in section 4.5.1. However, this alternative is not
yet integrated into ISIR.

Determining the consistent transitions with numerical simulation would
not change the basic algorithm in any way. Determining a transition would

107



require more computation time, but in many cases there would be less spu-
rious transitions and the predicted limits of the behaviour would be more
accurate. Representing the behaviour of external inputs would require some
rethinking. For example if u1(a) = ua1 and u1(b) = ub1 the current algorithm
assumes that ua1 < u1(t) < ub1, a < t < b. However, if numerical integration
is used to give a ground result, u1(t) must be assigned a ground value at each
integration step. In principle this results in an optimal control problem.

4.3.4 Consistent behaviours

A typical control problem can be stated as follows:

“Determine possible admissible paths from one state satisfying
given initial conditions into another state satisfying given end
conditions.”

The principle of determining the behaviours when the accessibility rela-
tion between the states is available is demonstrated in the following. In terms
of logic programming initial conditions can be denoted as init(S), end con-
ditions correspondingly as end(S). Accessibility relation between two states
corresponding to the transition relation discussed in the previous section can
be denoted as trans(S0,S1), and admissible states as admissible(S).
Then the required path can be defined in Prolog as shown in Table 31.

Due to implementation issues the ISIR-algorithm is not implemented as
in Table 31 but rather as the algorithm in section 3.3. For the purposes of
this report it is irrelevant to discuss this part of the actual ISIR-algorithm in
any more detail.

Finding a solution to a control problem in the above form is not always
sufficient. A solution like the above is useful for off-line analysis, for example
in verification of plant automatics. In principle, a knowledge-based control
system based e.g. on the ISIR-algorithm can be used in on-line control, but
in practice a more efficient and more easily implemented control algorithm
is typically required. Such a control algorithm can be extracted from the
solution obtained by ISIR in the following way. List the transitions x(t+0 )→
x(t−1 ) in which x reaches a landmark. They are candidates for preconditions
of a state transition of the control sequence. Then list the transitions of
the control variables u(t−1 ) → u(t+1 ). Those changes are the candidates for
control actions to be taken by the control sequence.
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Table 31: Finding an admissible behaviour of a discrete-event system.

trans(a,b).

trans(b,c).

trans(b,a).

trans(c,d).

trans(a,f).

trans(f,g).

trans(g,d).

init(a).

end(d).

path([S0|Path]):-

init(S0),end(Sn),

access(S0,Sn,Path,[S0]).

access(Sn,Sn,[],_).

access(S0,Sn,[S1|Path], Passed):-

trans(S0,S1),

admissible(S1),

not(member(S1,Passed)),

access(S1,Sn,Path,[S1|Passed]).

admissible(X):- not(X = c).

| ?- path(Path).

Path = [a,f,g,d]

4.3.5 Planning

The previously presented techniques can be used to support the designer
of plant automatics and the operators of a process plant, but they are not
sufficient for fully autonomous problem solving. To achieve autonomous ac-
complishment of higher level control tasks formal specification of the goal of
operation and operational restrictions must be developed and the above can
be used as the domain model in planning. The designer should be supported
in constructing a task hierarchy. Every task in such a hierarchy should have
• preconditions telling when it is possible to initiate the accomplishment

of the task;
• support conditions telling what successful accomplishment of the task

requires;
• end conditions telling what the state of the affairs after the accomplish-

ment of the task is.
In addition domain-specific ways to let the human designers characterize

their beliefs on what a good solution is like should be developed. There
should be application-oriented primitives to constrain the search space and
to give priorities to alternative search paths.
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Some problem specific descriptions of the desired behaviour have been
made but the ISIR requires modifications to make them generally applicable.

4.3.6 Verification

In principle designing plant automatics, operating procedures, alarm logic,
etc. is straightforward and can be accomplished manually. Nevertheless, the
reasoning tasks easily grow very complex because many different situations
must be considered. One of the difficulties is to detect all the qualitatively
different alternative behaviours of the plant, determine all the necessary pre-
conditions of a successful control action and all the possible consequences
of any control action. Considering the anticipated faults increases the com-
plexity of the design work especially because the consequences of a fault
depend on the state of the system at the moment of the failure. Typical
errors in design are incomplete exception handling, unforeseen side-effects in
co-operation of various pieces of automatics, etc.

There are two main classes of the properties of the overall system be-
haviour to be acquired:

• The desired behaviour. This can be verified by showing that the desired
final state will always be reached.
• Avoidance of undesired behaviour. It must be shown that illegal states

will never be reached.

Verification of a discrete-event control system can be based:
• on the specification of the desired operation i.e. on the overall opera-

tional requirements and operational restrictions;
• on the knowledge of plant structure and behaviour i.e. the plant model;
• on the functional design of the automatics.
Because the functional design specifications of automatics are represented

in a formalism similar to sequential logic, including them in the analysis is
straightforward.

Summary Here it has been presented how a constrain-and-generate ap-
proach can be applied in qualitative reasoning to determine state transitions
which are consistent with the system model and the continuity rules. It has
also been discussed how to make use of the approach in analysis and control
of dynamic systems.

The model of the continuous-time part of the system is represented as
lumped parameter models represented with ordinary differential equations.
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The discrete features are represented using a formalism which resembles to
some extent the formalism used in dynamic logic ([22],[51]): Certain condition
implies the possibility of an event which, if it takes place, results in some
change in the state of affairs. In addition it is possible to tell which facts
must be always true.

4.4 HIGHER ORDER DERIVATIVES

The use of the second order derivatives in the transitions presented in section
4.3.2 is discussed in more detail. [34] discusses constraining the qualitative
simulation by using the knowledge of higher order derivatives at the critical
points where lower order derivatives vanish.

When ẋ(ta) = 0, x(ta) = xa, then at t > ta it may be x(t) < xa, x(t) =
xa, x(t) > xa. However, if the sign of ẍ(ta) is known, only one of the alter-
natives is possible.

Correspondingly, an increasing function may have ẋ(t) > 0, t < tb, ẋ(tb) =
0, x(tb) = xb only if ẍ(tb) ≤ 0.

Figure 28: Two connected tanks.

The system in Fig. 28 is used as an example of the difficulties caused by
the lack of implicit knowledge on higher order derivatives.

f(t) = c1(h1(t)− h2(t)) df(t) = c1(dh1(t)− dh2(t)) (23)

ḣ1(t) = f1(t)− f(t) dḣ1(t) = df1(t)− df(t) (24)

ḣ2(t) = f(t)− c2h2(t) dḣ2(t) = df(t)− c2dh2(t) (25)

The equations on the left carry the implicit information of the higher
order derivatives. However, because the ISIR-algorithm cannot make full use

111



of that implicit knowledge, the equations on the right are also included into
the specifications to introduce explicitly the first order derivatives. In other
words higher-order derivatives of state variables are included into the system
state vector; see section 4.3.1. But when for example ḧ2(t0) = 0 the signs of
the first order derivatives do not tell whether ḧ2(t), t > t0 is positive, negative

or zero. To avoid this ambiguity, the third order derivative d3

dt3
h2(t) must be

solved at points where ḧ2(t0) = 0.

d3

dt3
h2(t) = f̈(t)− c2ḧ2(t)

ḧ2(t)=0
= f̈(t) (26)

= c1(ḧ1(t)− ḧ2(t))
ḧ2(t)=0

= c1ḧ1(t) (27)

Table 32: Higher order derivatives in an ISIR-model of the system in Fig.
28.

sys_eq([c(c1,C1),c(c2,C2),cv(h1,H1,D_H1),cv(h2,H2,D_H2),

cv(f,F,D_F),cv(f1,F1,D_F1),cv(d_h1,D_H1,DD_H1),

cv(d_h2,D_H2,DD_H2)],

[_,_,_,_,_,_,DD_H2,DD_H1],[]):-

F1 = 5, D_F1 = 0,

F = C1*(H1 - H2), D_F = C1*(D_H1 - D_H2),

D_H1 = F1 - F, DD_H1 = D_F1 - D_F,

D_H2 = F - C2*H2, DD_H2 = D_F - C2*D_H2.

/* sign(D3_H1) = sign(DD_H2), sign(D3_H2) = sign(DD_H1) ! */

init(1,[c(c1,i(0.2,0.3)),c(c2,i(0.1,0.2)),cv(h1,p(0),_),

cv(h2,p(0),_),cv(f,_,_), cv(f1,p(5),_),cv(d_h1,_,_),

cv(d_h2,_,_)]).

The list of the second order derivatives is added as an additional argu-
ment into the sys eq-predicate in Table 32. Because only the sign of the
second order derivative is needed at the points where the first-order deriva-
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Figure 29: The state graph of the system in Fig. 28
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tive vanishes, it is not necessary to derive the exact value of the second-order
derivative.

Fig. 29 shows the state graph of the system. Fig. 30 shows the behaviour
of the system along one of the paths in the state graph.

4.5 ADDITIONAL FEATURES

In the following some separately developed and tested features not (yet)
integrated into ISIR are presented. First it is demonstrated how quantitative
integration utilising the ISIR-models can be used to solve initial and two-
point boundary value problems. Due to the properties of CLP(R) certain
type of boundary value problems can be solved in a straightforward way.

The principles of supporting the model generation of large systems is
sketched. The structural information on how the components are connected
together is utilised together with the model equations of individual compo-
nents. It is also demonstrated how the modular ISIR-model can be trans-
formed into a single set of model equations for possible symbolic manipula-
tion.

4.5.1 Quantitative integration

The model specification, i.e. the predicate sys eq, can be used to determine
the derivatives of the variables in any point in the state space. Thus,it can
be used also in quantitative simulation.

Fig. 31 shows the result of a traditional simulation run based on the
specification in Table 32. The curve ‘simulation’ is a plot of a step response
where the input fin has been changed from zero to one. It illustrates how
clever discretization of the state space using some auxiliary variables results in
quite a detailed partitioning of the state space. Hence, in principle qualitative
analysis can give quite a detailed result.

Due to the properties of the CLP(R) a basic simulation scheme can be
used in solving also other than initial value problems. Different problems can
be solved simply by instantiating different parameters.

The required flow into the two-tank system to fill the tanks in due time
is determined in Table 33. The simulation results show the required value of
f1 for the different values of the parameters c1 and c2. However, in general
special analysis of the system is needed to guarantee that the simulations
actually represent the boundaries for the actual behaviour.
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Figure 30: One path in the state graph in Fig. 29.
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Figure 31: State space of the system ḣ1(t) = fin(t), ḣ2(t) = f(t) −
fout(t), f(t) = c1(h1(t)− h2(t)), fout(t) = c2h2(t)
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Table 33: Constant flow to fill tank two to the level of 10 in ten seconds is
determined using the program in 34.

tst:-

(C1 = 0.2; C1 = 0.3),

(C2 = 0.1; C2 = 0.2),

simu(50,0,0,H1_f,10,C1,C2,F1,0.2),

dump([H1_f,C1,C2,F1]),nl,

fail.

?- tst.

H1_f = 20.1875

C1 = 0.2

C2 = 0.1

F1 = 3.39209

H1_f = 24.3358

C1 = 0.2

C2 = 0.2

F1 = 4.28548

H1_f = 16.4631

C1 = 0.3

C2 = 0.1

F1 = 3.04971

H1_f = 19.2252

C1 = 0.3

C2 = 0.2

F1 = 3.83392
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The program used to solve the problem is showed in Table 34. Calling
sys eq defines the relations between state variables and their derivatives in
a time point. integrate(X a,X b,DX,DT) tells the relations between the
value of a state variable at two different time points separated by the time
step DT. simu is called recursively until the required number of time steps
is passed.

Sometimes it is necessary to run a simulation which satisfies given, often
quite rough, requirements. Something is typically required of the final state
reached, and there are often some requirements on the way to reaching the
final state. The above problem is simple and could be solved directly by a
simple simulation run with CLP(R), but in general this is not the case.

Fig. 32 shows a mass-spring system whose phase portrait is presented in
Fig. 10 in the case where the control u is zero. Let us assume that the carriage

Figure 32: A carriage moved with a spring.

is initially standing still at x(0) = 0, v(0) = 0 and it must be moved to the
position x(tf ) = 1, v(tf ) = 0. Because there are infinitely many solutions to
this problem, it is necessary to have some additional constraints. Typically,
considering the time or the energy or the fuel spent is important. There may
also be some strict limits on the controls or on the state. As a compromise
between the real life problem and the complexity of its solution the sum of
the time integral of the square of the force F and the elapsed time multiplied
by the constant c is chosen as the criterium J to be minimised.

ẋ(t) = v(t) (28)

v̇(t) = a(t) (29)

F (t) = ma(t) = k(u(t)− x(t)) (30)

J =

∫ tf

0
c+

1

2
F 2(t)dt (31)
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Table 34: Using the ISIR-model of the two-tank system in numerical simula-
tion.

simu(N,H1 a,H2 a,H1 f,H2 f,C1,C2,F1,DT)

N: Number of integration steps
H1 a: Initial value of h1
H2 a: Initial value of h2
H1 f: Final value of h1
H2 f: Final value of h2
C1, C2: Model parameters
F1: Inflow into the system
DT: Integration time step

simu(N,H1_a,H2_a,H1_f,H2_f,C1,C2,F1,DT):-

sys_eq([c(c1,C1),c(c2,C2),cv(h1,H1_a,D_H1),cv(h2,H2_a,D_H2),

cv(f1,F1,_),cv(f,_,_),cv(d_h1,_,_),cv(d_h2,_,_)],_,[]),

integrate(H1_a,H1_b,D_H1,DT),

integrate(H2_a,H2_b,D_H2,DT),

(N > 0

-> simu(N-1,H1_b,H2_b,H1_f,H2_f,C1,C2,F1,DT)

; (H1_b = H1_f, H2_b = H2_f)).

integrate(Xa,Xb,Dx,Dt):-

Xb - Xa = Dx*Dt. there are more elegant algorithms

sys_eq([c(c1,C1),c(c2,C2),cv(h1,H1,D_H1),cv(h2,H2,D_H2),

cv(f1,F1,D_F1),cv(f,F,D_F),cv(d_h1,D_H1,DD_H1),

cv(d_h2,D_H2,DD_H2)],_,[]):-

F = C1*(H1 - H2),

D_F = C1*(D_H1 - D_H2),

D_H1 = F1 - F,

DD_H1 = D_F1 - D_F,

D_H2 = F - C2*H2,

DD_H2 = D_F - C2*D_H2.
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Applying variational calculus on the problem results in two additional
differential equations of variables p1(t) and p2(t) and an equation from which
optimal control u(t) can be resolved at any time point. In Table 35 the
equations are given using the ISIR input formalism22.

Table 35: ISIR-model of the mass-spring system with the auxiliary equations
implied by the optimality criteria.

sys_eq(_,[c(k,K), u(u,U), cv(x,X,DX), cv(v,V,DV),cv(p1,P1,DP1),

cv(p2,P2,DP2),c(h,H)],[]):-

DX = V,

DV = K*(U-X),

DP1 = U-X+P2*K,

DP2 = -P1,

U-X+P2*K = 0,

C + (U-X)*(U-X)/2 + P1*V + P2*K*(U-X) = H.

The problem is a typical two-point boundary value problem for which
some of the boundary conditions are known at the initial time and the others
at the final time. There are procedures in standard mathematical libraries
to solve this kind of problems iteratively. However, it is possible to use
CLP(R) to solve a class of two-point boundary value problems so that no
iteration is needed for fixed final time problems. It is sufficient to ‘simulate’
the differential equations once from initial to final time using for example the
integration scheme in Table 36 for each integration step.

Because at the initial time not enough boundary conditions are known
to determine constants of integration, the result of the ‘simulation’ is a large
underdetermined set of equations. However, when the ‘simulation’ reaches
the final time more boundary values are determined and the whole set of
equations can be solved.

In the current example also the final time must be solved which compli-
cates the solution procedure. Table 37 shows one of the alternative ways

22It is also possible to separate the actual system equations from the equations needed
in solving the optimal control.
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Table 36: Integration scheme applied in most of the examples in this report.

sim(N,DT,[X0|[X1|XX]],Xf):-

integrate(X0,X1,DT),

sys_eq(_,X1,_),

(N = 0 -> (XX = [], Xf = X1)

; sim(N-1,DT,[X1|XX],Xf)).

integrate([],[],_).

integrate([H0|T0],[H1|T1],DT):-

integ(H0,H1,DT),

integrate(T0,T1,DT).

integ(c(Id,X),c(Id,X),_).

integ(u(Id,_), u(Id,_),_).

integ(cv(Id,X,DX), cv(Id,X1,DX1),DT):- X1-X = (DX+DX1)/2*DT.
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to solve the problem. The iterative simulation scheme is first executed
for a given number of steps but having the integration time step unin-
stantiated ( sim(N iter, DT, [X0|XX], Xf), !). After that instantiation
x(tf ) = 1, v(tf ) = 0 is made ( goal(Xf, F, DF DT). Newton iteration (
once(init newt(0.2, DT, F, DF DT), F = 0)) is applied to determine the
integration time step DT so that the remaining boundary condition h(tf ) = 0
is satisfied resulting in the optimal trajectory shown in Fig. 33.

Table 37: The main program to solve the optimal control for the mass-spring
example.

tpbv(N_iter,C):-

retractall(newt(_,_,_)),

sys_eq(_,X0,_),

init(X0,C),

sim(N_iter,DT,[X0|XX],Xf),!,

goal(Xf,F,DF_DT),

once(init_newt(0.2,DT,F,DF_DT), F = 0),

tell(’tpbv.dat’),

outpt(0,DT,[X0|XX]),told.

goal([c(k,K),u(u,U),cv(x,1,DX),cv(v,0,DV),cv(p1,P1,DP1),

cv(p2,P2,DP2),c(h,H), c(c,_)],H,1).

Newton iteration is implemented using assert and retract to allow it-
eration on backtracking as shown in Table 38. Another approach without
backtracking is employed for example on page 152.

There are many design and analysis tasks which require solving control
problems. The requirements are often quite vague. Sometimes discrete-
event type control strategy is appropriate, but sometimes more sophisticated
continuous time solution is needed. The above shows that the same model
can be used for both purposes23.

23It might be possible to use the additional equations implied by the optimality principle
also in the actual ISIR-algorithm to constrain the behaviours. However, this possibility
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Table 38: Newton iteration to determine such X that E becomes zero. DE DX

is the partial derivative of E.

init_newt(X,X,E,DE_DX):-

once(retractall(newt(_,_,_))),

assert(newt(X,E,DE_DX)).

init_newt(_,X,E,DE_DX):- newt_iter(X,E,DE_DX).

newt_iter(X,E,DE_DX):-

retract(newt(X0,E0,DE_DX0)),

E0 + DE_DX0*(X1-X0) = 0,

X = max(X0/2,min(2*X0,X1)), % not too far in one step !

printf(’e: % x: % de_dx: %\n’,[E0,X0,DE_DX0]),

assert(newt(X,E,DE_DX)).

newt_iter(X,E,DE_DX):- newt_iter(X,E,DE_DX).

Figure 33: The optimal trajectory of the carriage.
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Consistent state transitions can also be determined by solving a set of two-
point boundary value problems because the possible episodes are specified
via the values of state variables and their derivatives at the end points of the
episode. How to do this is demonstrated in section 7.

4.5.2 Support for the modelling of large systems

In the above examples the system specifications are written manually. How-
ever, the structure of the specifications is such that most of them can be
generated automatically from process plant design documents. Automatic
or at least semi-automatic computer-aided generation of the specifications is
necessary in practice because the systems are large and complex.

The knowledge required in constructing the plant model can be grouped
into:

• Structural knowledge on how components are connected together. Such
knowledge can be obtained from P&I-diagrams and other corresponding
documents.
• Operational characteristics of the components typically approximated

with mathematical equations.
• Knowledge on the laws of physics — like mass and heat balances —

governing the phenomena taking place in the plant.

Part of the above knowledge can be conveniently presented as mathematical
(differential) equations and inequalities, while some of the information is best
represented using logic clauses.

When modelling large systems, the model should be generated systemat-
ically and in a tractable way from the plant documentation. The following
shows that some of the modelling can be automated.

The knowledge on the connections of the components in Fig. 34 can be
represented for example in Prolog as in Table 39.

These specifications of the connections can be extracted automatically
from plant P&I-diagrams. From these specifications it is straightforward to
generate the Prolog predicate in Table 40. That predicate is readily available
in reasoning after the components have been given a definition. Table 40 also
gives some alternative ways to model the components.

There may be in the model non-linear constraint equations or even con-
straints which do not have analytic solutions at all. Sometimes it is sufficient
to solve them separately so that the numeric iterative solutions are coded

has not yet been evaluated.
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Figure 34: a piece of a plant P&I-diagram

Table 39: Structural information of a plant in Fig. 34 represented in Prolog.

connected(valve(v1),pump(p3)).

connected(pump(p3),node(1)).

connected(valve(v3),node(1)).

...

connected(node(1),tank(t4)).
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Table 40: System model generated from the structural information in Table
39

sys([V1,V3,P3,T4]):-

valve(V1_in,V1_out,V1),

pump(V1_out,P3_out,P3),

valve(V3_in,V3_out,V3),

tank(T4_in,T4_out,T4),

sum([P3_out,V3_out,T4_in],0).

tank(Fin, Fout, M, Dm):- Dm = Fin - Fout.

% h(P,V,M) = 0 if taking pressure into account

valve(0, 0, closed).

valve(F, F, open).

% valve(F, F, Pin, Pout,S):- F = g(S)*sqrt(Pin - Pout).
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inside the model of the corresponding component. However, in general this
is not the case but there are constraints which represent relations extending
over many components24. Let us modify the earlier example on a network
of valves to see how such relations can be handled, see Table 41. The model
is constructed from components (‘modules’ or ‘objects’) connected together
but the resulting model is still one set of simultaneous equations. CLP(R)

prints out the equations when the model is called with all the arguments
uninstantiated as shown in Table 42.

Table 41: A network of valves with non-linear relation between flow and the
pressure difference.

net(P1,P2,P3,P,F1,F2,F3,F4,s(0.1,0.3,0.6,1).

Other alternatives are given for other combinations for the valve states,
but the above alone shows that in this case it is sufficient to provide the non-
linear relations separate solutions, i.e. it is sufficient to code the solution
inside the valve-predicate.

It can be concluded that CLP(R) allows modular modelling of the plant
without forcing to try modular or object-oriented problem solving.

The main principles followed in the ISIR approach when modelling any
industrial process can be summarised as follows:

• A set of variables is selected to represent the state of the system. Typ-
ically the state variables represent the states of the components.
• Some significant values of continuous time variables are marked as land-

marks.
• System time is considered as a sequence of time points and time inter-

vals.
• State transitions are modeled as transition constraints telling which

pairs of old and new values of the variables are possible.
• Mutual dependencies between state variables are modelled as state con-

straints telling a consistent system state from an inconsistent one.

24It is very important to realize that although it is possible to make a modular description
of the plant the resulting model may still be a set of equations which must be solved
simultaneously.
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Table 42: The model equations of the system 41 collected together. The
modular structure of the original specification does not prevent global analysis
of the equations.

2 ?- net(P1,P2,P3,P,F1,F2,F3,F4,V1,V2,V3,V4).

V4 = open

V3 = open

V2 = open

V1 = open

F1 = F4 + F3 + F2

F4 = pow(P, 0.5)

1.66667*F3 = pow(-P3 + P, 0.5)

3.33333*F2 = pow(-P2 + P, 0.5)

10*F4 + 10*F3 + 10*F2 = pow(P1 - P, 0.5)

• The overall state and transition constraints are collected systematically
or automatically from small individual constraints to make the mod-
elling simple and straightforward.
• The individual constraints must be complete so that they always give

the correct result. For example, if a variable can remain unchanged in a
state transition this alternative must be included in the corresponding
transition constraint.

The above principles must be followed

• to be able to describe concurrent phenomena;
• to be able to describe continuous change;
• to be able to describe complex dependencies between system compo-

nents;
• to avoid complex reasoning while modelling the system;
• to allow a modular systematic approach to knowledge representation.
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4.5.3 Support for the modelling of automatics

The goal of the research on the ISIR-algorithm is to develop a method for
making use of deep knowledge of continuous time industrial processes in the
design and V&V of discrete-event control strategies. The main difficulty is
the representation of the knowledge of continuous processes and the reasoning
based on it. Purely discrete dynamic systems are discussed a lot in the
literature and there are tools and methods that can be applied if the basic
ones already presented in this report are not sufficient. Thus, not much effort
is put into this area, but the very principles of modelling the automatics in
a way compatible with the ISIR-approach are discussed briefly.

% tr(Stp1, Stp2, H1, H2).

tr(1,2,2,_).

tr(2,3,_,1.8).

tr(X,X,H1,H2):- dif(H1,2), dif(H2,1.8).

% action(Stp,V1,V2).

action(1,_,_).

action(2,closed,_).

action(3,_,open).

Figure 35: A piece of a plant automatics

Control sequences with branches are best modelled as a hierarchy of se-
quences. On the top level an extra state vector is used to tell which of the
low-level sequences are active and which are not.

Any non-branching sequence can be modelled according to the example
in Fig. 35. tr specifies the possible transitions of the sequence, action

constrains the possible values of an actuator.
The action-predicate does not tell for example what the value of v2 is

in a state where Stp = 2. In such cases there are two alternatives:

• Assume that in such a state v2 can be anything.

• When considering automatics it can be assumed that the actuators
change state only when explicitly told to. Thus, it can be assumed
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that if no command is given for an actuator, its state is preserved in
the transition.

4.6 CHARACTERISTICS OF THE ISIR-ALGORITHM

In the following the ISIR-algorithm is related to some frequently discussed
topics of qualitative reasoning.

Causality is often discussed in the context of model-based reasoning. In
process plants the causality relations are often bi-directional, only control
inputs and measurements have uni-directional causality relations towards
the plant. In ISIR causality is not considered explicitly. For example the
equation U = RI for the voltage and the current through a resistor is simply
considered a constraint. In a typical case R is marked constant to express
the fact that U and I will change according to the external influence, but R
will not. But it is also possible to mark U constant and let R change if that
choice reflects the system to be modelled.

Because in the ISIR-approach modelling the plant behaviour and mod-
elling the control strategy are separated, uni-directional causality of control
inputs can be modelled. When determining the plant state satisfying all the
constraints related to a transition of the type t+i → t−i+1 the control inputs
are considered constant. Correspondingly, when determining control inputs
and control actions at a transition of type t−i → t+i , the state variables can
be considered fixed and only their derivatives may be assumed to change.

In this report applying model-based reasoning directly on on-line auto-
matic control is not discussed. ISIR has many of the features needed for
on-line control, but on-line control states also additional requirements not
considered in the development of the ISIR-algorithm.

Correct abstraction level is emphasized in the literature. Models and
problem solving tools should concentrate on those features of the system be-
haviour essential in solving the problems. In the context of discrete-event
control such features are logic conditions, episodes during which some pro-
cess variables are increasing or decreasing, and events at which something
significant occurs. These are on the abstraction level used in ISIR.

In the following ISIR is related to ten requirements for a theory of change
as presented by Shoham in [49]: A temporal language

• should support statements that refer to time intervals;

In ISIR the system behaviour is considered as a sequence of
time intervals separated by time points.
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• should allow representation of continuous change;

Representing continuous change is the main objective of the
work on the ISIR-algorithm.

• should avoid inter-frame problem (= It should not be necessary to list
all the facts which are not changed by an action);

The consequences of an action are not listed explicitly. All
the consequences not excluded by any of the given constraints
are considered possible.

• must allow representation of concurrent actions;

Concurrent behaviour does not need any specific representa-
tion. Concurrency is inherent in the ISIR-algorithm.

• should avoid the intra-frame problem (Intra-frame problem: the result
of an action depends also on other actions performed at the same time,
not only on conditions prevailing when the action is initiated.);

Because the consequences of an action are not specified ex-
plicitly but via the constraints this problem is not encoun-
tered.

• should allow representation of suppressed causation: natural death and
delayed effect (Should allow modelling empirical associations of causal
processes, not the actual causal processes in full detail);

This property is not yet included. However, some kind of a
‘qualitative timer’ included into the system state could be a
solution. Its internal state and its output would be false

until its input is triggered. Then its internal state would
change to true after which its output could either change
to true or remain false till a later time instant.

• should allow representation of possible worlds (for example alternative
future system states when action is either taken or not);

ISIR generates a state graph to represent the possible alter-
native futures.
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• should avoid cross-world identification problem (should allow selective
identification of propositional tokens in two possible worlds);

The only significant tokens in different system states are the
values of system state variables which can be easily identified.

• should allow easy modification of knowledge, (modularity);

It is possible to make the modification of the knowledge easy.
Currently the knowledge must be provided as logic clauses
and mathematical equations, which is sufficient for small sys-
tems.

• should have a computational framework.

The ISIR-algorithm is the computational framework.

That ISIRsatisfies the above requirements does not prove that it imple-
ments a general theory of change. However, it indicates that on its restricted
domain it satisfies the basic requirements.
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5 A POWER PLANT FEEDWATER SYSTEM

Work done elsewhere has demonstrated the suitability of Prolog in solving
problems of logic. Being a ‘dialect’ of Prolog CLP(R) provides the same power
of solving logic ‘puzzles’. The examples in the previous chapters have shown
that ISIR supports the integration of discrete and continuous domains. They
have also shown the soundness of the principles in dealing with the continuous
systems.

A power plant feedwater system is modelled and analyzed in the following
to test ISIR with a more realistic system. To work with a real life example
it is necessary to have tools which support the generation of the ISIR model.
Because such a tool does not yet exist, a simplified feedwater system is an-
alyzed. In spite of the simplification the model is much more complex than
those in the previous examples. In addition it demonstrates how to deal with
some aspects of systems not encountered when working with the proof-of-the-
principle cases. For example there are constraints which do not have analytic
solutions. The example shows how numerical iteration can be applied to deal
with such constraints.

ISIR requires that the system model is a constraint which can be used to
solve any of the variables as a function of the others. The low-level piece of
knowledge needed is a ‘Prolog-style’ relation between system state variables.

Much of the plant operation is based on taking discrete control actions.
Control sequences are based on reasoning like

“When I take action a, x will start to increase. When x = x1 I
will take actions b and c so that . . . ”

“All the time I have to worry about z not getting too high and
. . . ”

“Pumps and valves have all kinds of restrictions of operation
which I have to remember.”

“The other parts of automatics may have some effect on the part
I am now designing”

· · ·

In the design and verification of plant automatics it is important to know
the relationships between process variables. Often the only available but
fortunately also sufficient knowledge for early design phases is abstract qual-
itative knowledge. For automated reasoning such knowledge is also most
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appropriate. However, for example the properties of saturated steam are
difficult to describe qualitatively. Fortunately there is no reason to do that
because there is accurate knowledge on the properties of the saturated steam
and because it is possible to make efficient use of appropriately presented
quantitative knowledge in automated reasoning.

5.1 HEAT EXCHANGERS

Heat exchangers and the steam generators are central components of a feed-
water system. Two phenomena must be modelled to handle them properly:
properties of saturated steam and water, and heat transfer through the heat
exchanger wall.

The properties of saturated steam and water were first tried to be approx-
imated with low order polynomials allowing analytic solution, documented
as alternative B later in this section. However, the result was not satisfactory
and higher order polynomials were chosen and iterative solutions of the prob-
lems were employed. This approach was easy to implement and gave good
enough results. It should also be possible to use existing codes for the prop-
erties of steam and water to get more accurate results. However, integrating
them into the ISIR-algorithm requires some C- and unix-programming which
might be laborious and is thus left for ‘some later time’.

5.1.1 Saturated steam in a drum

The underlying thermodynamics of this section are presented for example in
[1].

The system equations Fig. 36 shows a tank filled with saturated steam
and water in thermodynamic balance. Water is pumped into the tank (fi).
Saturated steam can be let out of the drum (fo). Heat is flowing into the
drum (Q).
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Figure 36: A drum filled with saturated steam and water.

The system obeys the following equations:

M(t) = M ′(t) +M ′′(t) (32)

x(t) =
M ′′(t)

M ′(t) +M ′′(t)
(33)

v(t)M(t) = V (34)

v̇(t)M(t) + v(t)Ṁ(t) = 0 (35)

h(t)M(t) = H(t) (36)

ḣ(t)M(t) + h(t)Ṁ(t) = Ḣ(t) (37)

Ṁ(t) = fi(t)− fo(t) (38)

Ḣ(t) = Q(t) + fi(t)hi(t)− fo(t)h(t) (39)

where
v(t) : specific volume of the mixture of steam and water in the drum
M(t) : total mass of steam and water
M ′(t) : mass of water
M ′′(t) : mass of steam
V : the volume of the drum
h(t) : specific enthalpy of the contents of the drum
H(t) : enthalpy of the contents of the drum
fi(t) : inflow into the drum
fo(t) : outflow from the drum
Q(t) : heat flowing into the drum

Approximative equations for steam properties, A The thermody-
namic state of the system can be described by any two of the state variables
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v, h, T, x where v is the specific volume, h the specific enthalpy, T the tem-
perature and x the steam content of the thermodynamic system. T can be
replaced by pressure p because it is a function of T . As the equations 32 –
39 show, a definition for a general relation steam(T, v, h, x) is necessary. It
should tell the values of the other state variables when any two of them are
known. Because control aims in changing the system state, it is necessary
to consider also the rates of change so that actually to determine a relation
sat steam(T, Ṫ , v, v̇, h, ḣ, x, ẋ) must be determined.

The equations

v(x, T ) = v′(T ) + x(v′′(T )− v′(T )) (40)

h(x, T ) = h′(T ) + x(h′′(T )− h′(T )) (41)

where
v: specific volume of the mixture of steam and water
v′: specific volume of saturated water
v′′: specific volume of saturated steam
h: specific enthalpy of the mixture of steam and water
h′: specific enthalpy of saturated water
h′′: specific enthalpy of saturated steam
x: proportion of steam in the mixture of steam and water
T : temperature of the mixture of steam and water

tell the relations between v, h and x. v′, v′′, h′, h′′ are tabulated as functions
of T (or p). Also the relation between p and T is tabulated.

The functions v′(T ), v′′(T ), h′(T ) and h′′(T ) can be approximated suc-
cessfully with low order polynomials of temperature25 T. Here the approxi-
mating polynomials p(xi) = yi are determined by minimising the following
weighed square error

E =

N∑
1

(yi − p(xi))2

y2i
(42)

Differentiating the equations 40 and 41 gives the relations necessary to
solve v̇, ḣ, ẋ and ṫ.

From an equation z(x, y) = f(y)x+g(y), CLP(R) can directly solve z if y
and x are known or it can solve x if z and y are known. But because CLP(R)

cannot solve y directly even if z and x are known y must be given an explicit
solution as a function of x and z.

25T can be replaced with p or any function of either p or T, for example
√
p.
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To provide a general constraint representing the equations 40 and 41 they,
and the solution of T from them, must be represented as a CLP(R)-constraint.
If T is known CLP(R) can directly solve h, v and x. A CLP(R)-predicate is
constructed which waits until h and v, h and x or v and x are known and if
T is not yet known it is solved with Newton iteration:

F (xn) + Fx(xn)(xn+1 − xn) = 0 (43)

For example, for solving T from v and h, the iteration is implemented as
shown in Table 43. The predicate newt stvh is called only when Tf remains
unknown (= Tf is not ground after all the variables to be instantiated are
already instantiated26). Thus the problem solving capabilities of CLP(R) are
not needed in this case and the iteration could as well be implemented in for
example the programming language C. In this way efficient existing numerical
routines could be applied.

The resulting constraint was tested on a pressure range from 3.5bar to
60bar for x-values 0, 0.05, 0.5, 0.95 and 1. In the test, all the possible pairs
of x, v, h, T were chosen as base variables to solve the other two. There were
altogether 735 test cases. In 733 cases all the prediction errors where less
than 2%. In the remaining two cases the constraints failed altogether. This
occurred because the maximum value of h′′ in the test data is 2802.3 and the
maximum of the estimate of h′′ obtained by 42 is slightly less than that.

Because the ISIR-algorithm searches for minima and maxima of state
variables, points where gradients vanish must be solved as well. For saturated
steam, ∂h

∂T = 0 when x is high enough and ∂v
∂T = 0 for a narrow region

0 < x << 1. The extremes can be solved analytically when v′, v′′, h′ and h′′

are approximated with third order polynomials of T. In the general case
the extremes must be searched iteratively. Table 44 shows how to solve the
maximum of h when x is known.

Note that the second order derivatives are not solved analytically but
differences are used instead.

Summary A CLP(R) predicate, fully compatible with the CLP(R) prob-
lem solving, is constructed to tell the relation between the properties of the
saturated steam. This allows reasoning on the behaviour of various systems
containing saturated steam.

26The meta-logical features of CLP(R) make it easy to control the computation ac-
cording to which variables have not yet been solved. Note that when programming a
general-purpose predicate it cannot be anticipated which of the variables, if any, are known
and which are not.
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Table 43: Using Newton iteration to solve temperature from equations 40 and
41.

newt_stvh(N, V, H, X, T, Tf):-

N >= 0,

hv(Hw,DHw,Hs,DHs,Vw,DVw,Vs,DVs,T),

Xa = (V - Vw)/(Vs - Vw),

DX = (-DVw*(Vs - Vw) - (V-Vw)*(DVs-DVw))/(Vs-Vw)/(Vs-Vw),

F = Hw + Xa*(Hs - Hw) - H,

DF = DHw + Xa*(DHs - DHw) + DX*(Hs-Hw),

F + DF*(T1-T) = 0,

(N*1e4*F = 0

-> (T1 = Tf, T1 = T, X = Xa)

; (T1 > 0, T1 < 400, newt_stvh(N-1, V, H, X, T1, Tf))),!.

% relations between steam parameters

hv(Hw0,D_Hw0,Hs0,D_Hs0,Vw0,D_Vw0,Vs0,D_Vs0,T0):-

% some scaling

T = (T0 + #abs_zero)/100,

Vw = 1000*Vw0, D_Vw = 1e5*D_Vw0,

10*Vs = 1/Vs0, 1000*D_Vs0 = -D_Vs/Vs/Vs,

Hw = Hw0/100, D_Hw = D_Hw0,

Hs = Hs0/1000, D_Hs = D_Hs0/10,

% interpolation

f3(Hw, D_Hw, T, #ahw, #bhw, #chw, #dhw),

f3(Hs, D_Hs, T, #ahs, #bhs, #chs, #dhs),

f3(Vw, D_Vw, T, #avw, #bvw, #cvw, #dvw),

f3(Vs, D_Vs, T, #avs, #bvs, #cvs, #dvs).

f3(F,DF,X,A,B,C,D):-

F = A*X*X*X + B*X*X + C*X + D,

DF = 3*A*X*X + 2*B*X + C.
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Table 44: Solving the maximum of h when x is known.

hill_stxh(N, X, H, V, T, Tf):-

N >= 0,

hv(Hw,DHw,Hs,DHs,Vw,_,Vs,_,T),

hv(Hw1,DHw1,Hs1,DHs1,Vw1,_,Vs1,_,T+1),

DF = DHw + X*(DHs - DHw),

DF1 = DHw1 + X*(DHs1 - DHw1),

DF + (DF1-DF)*(T1-T) = 0,

(T1 = T

-> (T1 = Tf, V = Vw + X*(Vs-Vw), Hw + X*(Hs-Hw) = H)

; (T1 > 0, T1 < 400, hill_stxh(N-1,X,H,V,T1,Tf))),!.

Approximative equations for steam properties, B Trying to solve
equations 40 and 41 analytically gives 4th order polynomials even when using
2nd order interpolating polynomials. The equations can be rewritten so that
it is sufficient to solve equations of the degree no higher than the interpolating
polynomials allowing analytic solution instead of numeric iteration.

The equations 40 and 41 give

p(T ) = f1(T ) (44)

h(x, s) = h′(s) + x(h′′(s)− h′(s))
= f2(s)x+ g2(s) (45)

h(v, s) =
h′′(s)− h′(s)
v′′(s)− v′(s)

v + h′(s)− h′′(s)− h′(s)
v′′(s)− v′(s)

v′(s)

0 = f3(s)v + g3(s) (46)

In a test the coefficients fi and gi were interpolated with second order
polynomials of

√
p so that it was easy to code analytic solution for the equa-

tions. The resulting constraint was tested on a pressure range from 3.5bar
to 60bar and for x-values 0, 0.05, 0.5, 0.95 and 1. In the test all the possible
pairs of x, v, h, T were chosen as base variables to solve the other two. There
were altogether 733 test cases. In 49 cases the program did not succeed to
pass the 5% error margin. Typically prediction failed at x = 0 when predict-
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ing the other variables as a function of v and x or t and h and at x = 1 or
x = 0.95 when predicting the other variables as a function of h and x.

The low accuracy is revealed in situations not encountered in typical
examples. However, it is evident that if this approach is applied, at least
third order polynomials should be used.

Table 45: A drum filled with saturated steam and water.

sys_eq([c(vvhex,VVhex), u(fohex,Fohex,_), u(fihex,Fihex,_),

cv(xhex,Xhex,D_Xhex), cv(phex,Phex,D_Phex), u(q,Q,std)]

,_, [Frz2,Frz4,Frz5]):-

st_drum(VVhex,Phex,D_Phex,_, _,Xhex,D_Xhex, Fihex-Fohex,

Fihex*Hshex-Fohex*Hwhex - Q, Frz2),

sat_steam(Phex,_, _,_,_,_,Hshex,_,1,_, Frz4),

sat_steam(Phex,_, _,_,_,_,Hwhex,_,0,_, Frz5).

st_drum(VV,P,DP,T,DT,X,DX,DM,Q,Frz):-

V*M = VV, DV*M + V*DM = 0,

DH*M + H*DM = Q,

sat_steam(P,DP,V,DV,T,DT,H,DH,X,DX,Frz).

Examples In Table 46 there are some test results of the program in Table
45 which implements the equations 32 – 39 in a case where saturated steam
in the pressure of the drum is lead into it and saturated water is lead out of
the drum. The columns on the left of ‘->’ represent the a priori knowledge
of the values of the variables. ‘?’ indicates that there are no constraints on
the corresponding variable. ‘l|h’ indicates an interval from l to h.

5.1.2 Heat flow through a heat exchanger wall

The heat flow Q in Fig. 36 is established in the heat exchanger in Fig. 37
with water flowing in a pipe through the water section of the drum. In the
following a simple approximative equation for the heat transfer is derived.
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Table 46: Steam and water flowing in and out of a drum filled with saturated
steam and water.

id magnitude derivative -> magnitude derivative

vvhex 100 - = 100 -

fohex 5 ? d 5 x

fihex ? ? m 5 x

xhex 0.65 0 = 0.65 0

phex 20 0 = 20 0

q ? std m 9444 std

id magnitude derivative -> magnitude derivative

vvhex 100 - = 100 -

fohex ? ? m 5.294 x

fihex ? ? m 5.294 x

xhex 0.65 0 = 0.65 0

phex 20 0 = 20 0

q 1e+04 std = 1e+04 std

id magnitude derivative -> magnitude derivative

vvhex 100 - = 100 -

fohex ? ? m 0|5.294 x

fihex ? ? m 0.5232|5.294 x

xhex 0.65 -1e+05|0 d 0.65 -0.0022|0

phex 20 0 = 20 0

q 1000|1e+0 std = 1000|1e+04 std

id magnitude derivative -> magnitude derivative

vvhex 100 - = 100 -

fohex 3|10 ? d 3|10 x

fihex 3|10 ? m 5.267|10 x

xhex 0.65 -1e+05|0 d 0.65 -0.00098|0

phex 20 0 = 20 0

q 1e+04|3e+0 std m 1e+04|1.889e+04 std

id magnitude derivative -> magnitude derivative

vvhex 100 - = 100 -

fohex 5|10 ? d 5|10 x

fihex ? ? m 5|10 x

xhex 0.5 0 = 0.5 0

phex 10|20 0 = 10|20 0

q ? std m 9444|2.014e+04 std
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Figure 37: A simple heat exchanger.

Figure 38: A pipe in a given ambient temperature.
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There is a constant flow F through the pipe. Let us consider a small slice
dx of the mass flowing in the pipe and a small time interval dt so that

dx = vdt⇔
∫ L

0
dx =

∫ tf

0
vdt⇔ L = vtf

The area of the slice is dA and its volume is dV .

v =
F

πR2
& dx = v dt (47)

dA = 2πRdx & dV = πR2 dx (48)

The heat flowing into the slice is q = cc dA (Ta − T ) = dU/dt. The specific
heat capacity at constant pressure cp is defined with the equation dU/dt =
cp dV dT/dt. In the following cp is assumed to be constant with respect to
temperature.

dU/dt = q ⇔ cc dA (Ta − T ) = cp dV dT/dt (49)

⇔ 2πRdx cc(Ta − T ) =
cpπR

2 dx dT

dx/v

⇔ 2 dx cc(Ta − T ) = cpRdT v

⇔ 2cc(Ta − T )πRdx = cpF dT

⇔
∫ T

T0

dT

(Ta − T )
= C

2πR

F

∫ L

0
dx, C = cc/cp

⇔ ln
Ta − T
Ta − T0

= −CA/F

⇔ Ta − T = (Ta − T0)e−CA/F (50)

∆U = Q = cpF (T − T0) (51)

5.2 A FEEDWATER SYSTEM

A model of the system in Fig. 39 is constructed and used to solve some
low level problems related to reasoning on the system behaviour. Some of
the model equations are rough approximations, because the purpose of the
example is more to demonstrate the principles than to derive highly accurate
representations on the modelled phenomena. The main program implements
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Figure 39: A power plant feedwater system.
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the following equations

hhot = 800 + 4.3(Thot − 180) (52)

mrḣhot = pr −Qsg (53)

ṁsg = ffw − fs (54)

Wpump = 800 + 4.3((Tpump − Tfw1)− 180) (55)

psg − pfw1 = Wpump/v (56)

∆Tsg = 4.3(Thot − Tsg) (57)

Q = Qhex + ffw(Hfw1 +Wpump) +Qsg − fsHsteam (58)

∆Thex = 4.3(Thex − Tpump) (59)

The model is a CLP(R) predicate sys eq in Table 47 where sat steam

is a predicate telling the properties of saturated steam and st drum is a
constraint for a drum containing saturated steam. In the CLP(R) model the
derivatives of the constraints are written explicitly.

The variable stp has no meaning here. Such discrete variables can be
used e.g. to designate the state of an automatic control sequence.

st drum implements the equations

vm = V, v̇m+ vṁ = 0 (60)

ḣm+ hṁ = Q (61)

st drum specifies the properties of saturated steam and water implements
a rough approximation of the specific enthalpy of water. conduct and xexp

implement the equations for heat transfer.

a+ bx+ cxe−
k
x = 0 (62)

conduct can be used only when the primary side flow and the heat transfer
coefficient are known.

Newton iteration F (xn) + Fx(xn)(xn+1 − xn) = 0 is applied in solving x
from the equation 62 as shown in Table 48.

The example in Table 49 shows how system state can be determined when
some of the variables are known. If for example ḟs had been given a positive
value the result would show how to make fs increase. Another way to see
what is needed to increase fs is to compare two plant states having different
values of fs as the second example shows.
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Table 47: A model of the feedwater system

sys_eq(Time,[Stp,c(khex,Khex), c(ksg,Ksg), c(vvhex,VVhex),

c(vvsg,VVsg), c(mr,Mr), c(fp,Fp), cv(pfw1,Pfw1,D_Pfw1),

cv(ffw,Ffw,D_Ffw), cv(fohex,Fohex,D_Foh),

cv(fihex,Fihex,D_Fih),cv(xhex,Xhex,D_Xhex),

cv(phex,Phex,D_Phex), cv(xsg,Xsg, D_Xsg),

cv(psg,Psg,D_Psg), cv(thot,Thot, D_Thot), cv(fs,Fs,D_Fs),

cv(pr,Pr,D_Pr)],Frz):-

water(Thot,D_Thot,_,D_Hhot),

Mr*D_Hhot = 1000*Pr - Qsg,

D_Msg = Ffw - Fs,

st_drum(VVsg,Psg,D_Psg,Tsg,_,Xsg,D_Xsg,D_Msg, Q, Frz1),

st_drum(VVhex,Phex,D_Phex,Thex, _,Xhex,D_Xhex,Fihex-Fohex,

Fihex*Hshex-Fohex*Hwhex - Qhex, Frz2),

sat_steam(Psg, _, _,_,_,_,Hsteam,_,1,0, Frz3),

sat_steam(Phex,_, _,_,_,_,Hshex,_,1,_, Frz4),

sat_steam(Phex,_, _,_,_,_,Hwhex,_,0,_, Frz5),

sat_steam(Pfw1,D_Pfw1,_,_,Tfw1,D_Tfw1,Hfw1,_,0,_, Frz6),

water(Tpump-Tfw1, D_Tpump - D_Tfw1, Wpump, D_Wpump),

Psg - Pfw1 = 1000*Wpump,

D_Psg - D_Pfw1 = 1000*D_Wpump,

Tsg_diff = 4.3*(Thot - Tsg),

Q = Qhex + Ffw*(Hfw1+Wpump) + Qsg - Fs*Hsteam,

Thex_diff = 4.3*(Thex-Tpump),

conduct(-Qsg, Tsg_diff, -Tsg_diff, Ksg, Fp),

xexp(Qsg-Q+D_Msg*Hsteam,Hfw1+Wpump-Hsteam+Thex_diff,-Thex_diff,

Khex,Ffw, Frz7).

st_drum(VV,P,DP,T,DT,X,DX,DM,Q,Frz):-

V*M = VV, DV*M + V*DM = 0,

DH*M + H*DM = Q,

sat_steam(P,DP,V,DV,T,DT,H,DH,X,DX,Frz).

water(T,DT,H,DH):-

H = 800 + 4.3*(T - 180),

DH = 4.3*DT. 146



Table 48: An iterative solution of the heat transfer equation 62.

conduct(A,B,C,K,X):- A + B*X + C*X*pow(#e, -K/X) = 0.

xexp(A,B,C,K,X,Frz):-

A + B*X + C*X*pow(#e, -K/X) = 0,

Frz = freeze(l(A,B,C,K),xexp2(0,A,B,C,K,0.001,X)).

xexp2(N,A,B,C,K,X,Xf):-

N < 20, X > 0,

A + B*X + C*X*pow(#e, -K/X) = Y,

DY = B + C*pow(#e, -K/X)*(1 + K/X),

(Y = 0

-> X = Xf

; (Y + DY*(X1 - X) = 0,

xexp2(N+1,A,B,C,K,X1,Xf))),!.
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Table 49: Solving unknown state variables and comparing two different plant
states. l|h designates the open interval from l to h. ? designates an un-
known.

id magnitude deriv -> magnitude derivative

stp 1 - = 1 -

khex 600|1000 - = 600|1000 -

ksg 6000|1e+04 - = 6000|1e+04 -

vvhex 100 - = 100 -

vvsg 1000 - = 1000 -

mr 1e+04 - = 1e+04 -

fp 5000 - = 5000 -

pfw1 7 0 = 7 0

ffw ? 0 m 160 0

fohex ? 0 m 20.97|21.43 0

fihex ? 0 m 20.97|21.43 0

xhex 0.7 0 = 0.7 0

phex 22 0 = 22 0

xsg 0.5 0 = 0.5 0

psg 45 0 = 45 0

thot ? 0 m 273.3|277.2 0

fs 160 0 = 160 0

pr ? 0 m 296|296.9 0

id magnitude derivative -> magnitude derivative

stp 1 - = 1 -

khex 600|1000 - = 600|1000 -

ksg 6000|1e+04 - = 6000|1e+04 -

vvhex 100 - = 100 -

vvsg 1000 - = 1000 -

mr 1e+04 - = 1e+04 -

fp 5000 - = 5000 -

pfw1 7 0 = 7 0

ffw 160 0 m 320 0

fohex 20.97|21.43 0 m 36.36|41.06 0

fihex 20.97|21.43 0 m 36.36|41.06 0

xhex 0.7 0 = 0.7 0

phex 22 0 = 22 0

xsg 0.5 0 = 0.5 0

psg 45 0 = 45 0

thot 273.3|277.2 0 m 289.4|297.6 0

fs 160 0 m 320 0

pr 296|296.9 0 m 595.4|604.1 0
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Figure 40: Changing the steam flow.
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From the parameters whose value has changed above pr is the primary
control variable27. . The analysis can be made more detailed by checking
what happens in the sequence pr = pr0 =⇒ pr0 < pr < prf =⇒ pr = prf .
Fig. 40 show the results of such an analysis. In addition to producing such
figures ISIR can check automatically whether any of the given operational
restrictions are violated during such a sequence of operations. That is use-
ful when considering for example plant start-up, when many operations are
performed simultaneously or must be accomplished in certain order to avoid
violating any operational restrictions.

It is also possible to require that the changes in control variables result
in a behaviour specified by the sequence fs = f0, ḟs = 0 =⇒ fs = f0, ḟs >
0 =⇒ f0 < fs < ff , ḟs > 0 =⇒ fs = ff , ḟs = 0 =⇒ but the computation will
be more complex.

The above can be used to determine which control inputs to change, in
which direction to change them, how much to change them and in which
order to change them.

5.3 Discussion

The above example revealed some complexity problems with the current im-
plementation. The static problems of solving the unknown variables when
the plant state was examined only at one time instant were solved very fast.
However, solving the problem of how to change the plant state turned out to
be very complex. So much memory was required that it cannot be claimed
that the current implementation can be applied on real-size problems of this
type. The complexity could be reduced with the following measures:

General Optimization of the Code In addition to employing the previ-
ously presented techniques no explicit attention is paid on the complex-
ity of the program. Careful analysis of the code might reveal possibili-
ties to reduce the complexity.

Reorganising the Main Program Especially the main program should
be examined for optimisation. For example, in addition to inserting
the new states in the state graph they are also unnecessarily stored for
long times in temporary lists of states whose successors have not yet
been identified.

27 Nothing determines the derivatives of the control variables and they affect only deriva-
tives of some other variables. Control variables can be identified automatically.
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Optimizing the Determination of Consistent Transitions The analy-
sis of consistent transition is complex and frequently used thus having
a great influence on the overall complexity of the program. The com-
plexity is due to extra alternatives in a predicate which guarantees that
a solution is found also in rare special cases. A more effective solution
could make the program much faster. However, this is the central and
most difficult part of the algorithm so that finding a better solution
might require a lot of work.

Using C for Numeric Iteration Currently many numeric problems are
solved with Newton iteration implemented recursively in CLP(R), which
is evidently an inefficient solution. In the next version of CLP(R) there
may be a better interface to other languages so that existing efficient
numeric routines can be employed.

Constraining the Search Space Requiring only that the plant must be
moved into a given state results in a lot of trial-and-error search because
the requirement constrains the search space poorly. This is because the
plant system integrates the inputs many times so that the effect of a
change in a control input in some of the state variables can be seen
only at a later time. It is possible to constrain the search space with
additional constraints, but it is difficult to generate such constraints
automatically. Requiring the user to give such constraints may result
in a situation where the user rather than the tool solves the problem.

Employing Numeric Integration The consistent transition can be deter-
mined with numeric integration if the task is considered as a two-point
boundary value problem. Solving such problems requires a lot of it-
eration but if the requirement of proper handling of uncertain models
is alleviated the results might be obtained fast enough. The approach
requires some preparatory work which may be difficult to automate so
that the manual work related to plant modelling increases.

ISIR is a prototype constructed for testing the principles of model-based
reasoning and not much attention has been paid to its efficiency. The im-
provements suggested above would make it more efficient. However, solving
control problems will always be complex and also the improved version of
ISIR would require a lot of computing capacity.
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6 A CONTINUOUS STIRRED TANKREACTOR

One important feature of a design tool is to detect such significant situations
and characteristics of the system behaviour which may remain undetected in
manual scrutiny. ISIR-models represent a class of real-life systems resulting
in predictions representing a class of behaviours. Because qualitatively sig-
nificantly different possible behaviours are presented as alternative classes of
predictions they are easy to detect. The following is a test on how well the
algorithm can distinguish relatively similar behaviours of a system having
somewhat complicated dynamics.

The system to be analysed has three steady states. A minor change in the
input may make the system drift from one steady state to another. Evidently
this is a significant pattern of behaviour but at the same time it is a challenge
for tools relying on rough plant models and qualitative methods.

The example demonstrates also the multiparameter Newton iteration.

Figure 41: A Continuous Stirred Tank Reactor.

In [11] Dalle Molle analyzes with QSIM a continuous stirred tank reactor
shown in Fig. 41. He presents the following model equations for an irre-
versible exothermic first-order reaction A→ B taking place in the reactor:

ĊA =
CAi − CA

τ
−RA (63)

Ṫ =
Ti − T
τ

−∆HRA (64)

RA = KACA (65)

KA = k0e
−E/T (66)

where
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CA: The concentration of A in the tank and in the exit stream
CAi : The concentration of A in the inlet stream
T : The temperature in the tank and in the exit stream
Ti: The temperature in the inlet stream
τ : Residence time or space velocity (tank volume/inlet flow rate)

RA: Rate of reaction of A
KA: Reaction rate constant
∆H: The heat of reaction (divided by solution density and heat capacity)
k0: The rate constant pre-exponential
E: activation energy (divided by the universal gas constant)

In Table 50 the above equations are written into the formalism required
by the ISIR-algorithm.

Table 50: The model of the continuous stirred tank reactor.

sys_eq([dv(iter_mod,_),c(k0,K0),c(e,E),c(tau,Tau),c(h_diff,H_dif

f),

c(ca_in,Ca_in), c(t_in,T_in),cv(t,T,D_T),cv(ca,Ca,D_Ca)],

[_,_,_,_,_,_,_,D_Ca,-Ca*D_T],[]):-

K0*pow(#e,-E/T)*Ca = Ra,

D_Ca = (Ca_in - Ca)/Tau - Ra,

D_T = (T_in - T)/Tau - H_diff*Ra.

It can be easily shown that ĊA has the same sign as the third-order
derivative of T and −CAṪ has the same sign as the third-order derivative of
CA. Thus, they are used in the higher order derivative constraints.

After having instantiated some of the variables the ISIR-algorithm applies
the predicate local extrem to instantiate the possibly remaining uninstan-
tiated variables. It can be used for example to determine e.g. the points
where the derivatives of some of the variables vanish. Here the predicate
local extrem is used to determine the solution of the system equations in
those cases where the CLP(R) internal equation solver cannot find the solu-
tion28.

Newton iteration is applied to find the zeroes of the functions F (T,CA) =
Ṫ − Ṫ (T,CA) and G(T,CA) = ĊA − ĊA(T,CA). The iteration is started

28The same iterative solution could be implemented also inside the predicate sys eq
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either from the point T = 600, CA = 0 (alternative a) or from the point
T = 340, CA = 1 (alternative b). The derivatives of F and G needed in
the iteration are approximated with differences by computing their values at
three points. Table 51 shows how the iteration is implemented.

The alternatives a and b often give different solutions. For example equa-
tions ?? and ?? have for certain parameter values three different steady state
solutions, one of them captured by the alternative a, an other captured by
the alternative b and the third one, an unstable steady state is not captured
at all. Evidently a more sophisticated approach is needed to solve this type
of problems. However, to demonstrate the results that can be obtained by
making a distinction between multiple solutions of the system equations the
above two alternatives are applied.

The model is tested by simulation starting from a steady state where
CAi = 1 and Ti = 340K as specified in Table 52. At some time during the
simulation the concentration CAi is reduced to lie between 0.9 and 0.95 as
specified with the predicate d trans.

It turned out that the quick and dirty implementation of the iteration
mode control together with the too inefficient implementation of the use of
higher order derivatives in the ISIR-algorithm resulted in too complex com-
putations because of many spurious predictions 29. So instead of applying
both the alternatives a and b for iteration in each step the initial state is de-
termined applying the alternative a in the iteration but further computations
after having changed the input concentration are accomplished applying the
alternative b. One of the predictions is shown in Fig. 42.

The prediction shows first a small decrease of concentration and then a
large increase of it while the temperature decreases. It shows that the al-
gorithm can tell the difference between the steady states and can capture
the change of the steady state. The analysis indicates that in principle sys-
tems modelled with quite complicated equations can be handled successfully.
However, it also reveals the need to further develop the algorithm.

29A PC with 25 MHz 486 processor and 16MB core memory was used
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Table 51: An iterative solution of the system equations of the continuous
stirred tank reactor.

local_extrem([dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in), c(t_in,T_in),cv(t,T,D_T),

cv(ca,Ca,D_Ca)]):-

((T0 = 600, C0 = 0, Mode = a); (T0 = 340, C0 = 1, Mode = b)),

iterate(30,[dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff), c(ca_in,Ca_in), c(t_in,T_in),cv(t,T0,D_T),

cv(ca,C0,D_Ca)],T,Ca).

local_extrem(_).

iterate(N,[dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in), c(t_in,T_in),cv(t,T0,D_T),

cv(ca,Ca0,D_Ca)],Tf,Caf):-

N > 0,

sys_eq([dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in),c(t_in,T_in),cv(t,T0,D_T+Faa),

cv(ca,Ca0,D_Ca+Gaa)],_,[]),

ground([Faa,Gaa]),

sys_eq([dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in),c(t_in,T_in),

cv(t,T0+1,D_T+Fba),cv(ca,Ca0,D_Ca+Gba)],_,[]),

sys_eq([dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in),c(t_in,T_in),

cv(t,T0,D_T+Fab),cv(ca,Ca0+#eps,D_Ca+Gab)],_,[]),

Faa + (Fba-Faa)*(T1-T0) + (Fab-Faa)*(Ca1-Ca0)/#eps = 0,

Gaa + (Gba-Gaa)*(T1-T0) + (Gab-Gaa)*(Ca1-Ca0)/#eps = 0,

(N*1000*(abs(Faa)+abs(Gaa)) = 0

-> (T0 = Tf, Ca0 = Caf, Faa = 0, Gaa = 0)

;

iterate(N-1,[dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,Ca_in), c(t_in,T_in),

cv(t,T1,D_T),cv(ca,Ca1,D_Ca)],Tf,Caf)), !.
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Figure 42: One Behaviour of the Continuous Stirred Tank Reactor.
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Table 52: Initial state of the analysis of the continuous stirred tank reactor
and the change of the input concentration.

init(1,[dv(iter_mod,a),c(k0,p(10000)),c(e,p(5000)),

c(tau,i(9.5,10.5)),c(h_diff,p(-200)),c(ca_in,p(1)),

c(t_in,p(340)),cv(t,_,p(0)),cv(ca,_,p(0))]).

d_trans([dv(iter_mod,_),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,p(1)), c(t_in,T_in),

cv(t,T,_),cv(ca,Ca,_)],

[dv(iter_mod,Mode),c(k0,K0),c(e,E),c(tau,Tau),

c(h_diff,H_diff),c(ca_in,i(0.9,0.95)),

c(t_in,T_in),cv(t,T,_),cv(ca,Ca,_)],_):-

Mode = b. %; Mode = a.
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7 OSCILLATING SYSTEMS

Figure 43: Phase plane representation of the behaviour of the second order
system 67 and 68.

The systems examined this far have not had oscillating behaviour. When
planning process plant automatics it can be often assumed, that the systems
are overdamped by nature or there are feedback controllers which make them
overdamped, so that no oscillating behaviour is observed. But of course this
is not always the case. The analysis of oscillating behaviour is also a good
test of the analysis algorithm.

The following simple linear second-order system is analyzed.

ẋ1(t) = x2(t) (67)

ẋ2(t) = c1x1(t) + c2x2(t) (68)

The above equations alone are not sufficient for the ISIR-algorithm to tell
a stable system from an unstable one. The explanation can be seen in Fig.
43. In principle the ISIR-algorithm considers the magnitudes of the state
variables only on the lines in the drawing, where any of the variables or
their derivatives vanish. Between the lines ISIR considers only the signs of
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the derivatives. This clearly is not sufficient to determine the stability of
the system. In general numerical integration is needed to determine the
exact trajectory. In this example integration would also be straightforward,
because the model and its parameters are assumed to be known exactly.

However, it is possible to include additional constraint equations into
the model to make the ISIR-analysis more accurate. In the current example
the system has a steady state at origin, which can be determined by calling
sys eq with all the derivatives instantiated to zero. The distance (or the
square of the distance) from the origin is a natural choice for an extra state
variable.

r(t) = x21 + x22 (69)

ṙ(t) = 2x1ẋ1 + 2x2ẋ2 (70)

Equation 69 introduces such a second order relation into the specification
which CLP(R) cannot solve. Thus, explicit solutions of the relation must be
given in the specification.

At points where the first order derivative of a variable vanishes the second
order derivative is used to determine the possible directions of change:

ẍ1
ẋ1=0
= ẋ2 (71)

ẍ2
ẋ2=0
= c1ẋ1 (72)

Fig. 44 shows one of the resulting behaviours. The maximum distance
from the origin decreases slowly. This is because the total energy is known to
decrease. However, the minimum distance gets to zero very soon; during the
first quarter of the revolution around origin. This is because the algorithm
does not take into account the time elapsed in a state change and thus it is
not known how much the energy can decrease during a state change.

7.1 EMPLOYING NUMERICAL INTEGRATION

ISIR-algorithm represents the behaviour of a continuous time function as a
— possibly branching — sequence of episodes. In Fig. 43 an episode is a
segment of the curve during which neither of the derivatives change sign. In
the previous section it was seen that if more accurate analysis is desired, time
must be taken into account which again requires that the length of the path
rather than only its endpoints must be considered. Thus, it is necessary to
consider system state on different points in the path representing an episode.
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Figure 44: One behaviour of the second order system 67 and 68.
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Table 53 shows how this can be accomplished with numerical methods to
solve differential equations:

First sys eq(X0) is called to tell the relations between state variables
and their derivatives in the initial state. Then a simulation predicate is called
to construct a set of equations telling the relations between the system states
at N iter time points. The initial state is (partially) instantiated with the
call init(X0) and the final state is (partially) instantiated with the call
final(Xf,F,DF DT) where F tells the difference of the desired final state
and the one given by the simulation. init newt calls an iteration to search
such a value for the integration time step DT which makes F zero.

init gives two extreme values for X1. final specifies two alternatives;
either the derivative of X2 vanishes or X1 becomes zero. Thus, init

and final represent conditions which the ISIR-algorithm defines for the low
level transitions predicates. Thus, the concept presented here can be directly
integrated into the ISIR-algorithm.

A simple integration scheme integrate is applied. The predicate simu

is called before any of the parameters — except the number of simulations
steps N is given a value.

Newton iteration is applied to determine the time step of iteration that
results to the desired final state. The iteration is implemented using assert
and retract as on page 120 to allow iteration on backtracking which gives a
clearer structure for the main program than the approach employed on page
152.

The result is shown in Table 54.
The above shows that it is possible to integrate numerical simulation

in the ISIR-algorithm when necessary. In all the details the above is not
sufficient. It is necessary to check that every point in the path satisfies the
conditions of an episode: there should be no change of sign of any derivative
and the variables should stay during the whole episode between the values in
the endpoints of the episode.

It seems that applying numerical simulation at the low-level in the ISIR-
algorithm could solve some of the problems encountered when analyzing sys-
tems having complicated continuous dynamics without losing the general
problem solving power. However, some points require further consideration.
For example, in the basic ISIR-algorithm it is sufficient to assume that exter-
nal control is either increasing, decreasing or steady. When applying numer-
ical simulation methods such an assumption results in heavy computation
because constrained dynamic optimisation problems must be solved. Prob-
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Table 53: Determining consistent state transition of an oscillating system.

tst(N_iter):- % N_iter = 20,

retractall(newt(_,_,_)),

sys_eq(X0),!,

simu(X0,Xf,N_iter,DT),

init(X0),

final(Xf,F,DF_DT),

once(init_newt(0.01,DT,F,N_iter*DF_DT), F = 0),

outpt(N_iter,DT,Xf),

fail.

sys_eq([c(c1,C1),c(c2,C2),cv(x1,X1,D_X1),cv(x2,X2,D_X2)]):-

D_X1 = X2,

D_X2 = C1*X1 + C2*X2.

simu(Xa,Xf,N,DT):-

sys_eq(Xb),

integrate(Xa,Xb,DT),!,

(N > 0 -> simu(Xb,Xf,N-1,DT) ; Xf = Xb).

integrate([],[],_).

integrate([H0|T0],[H1|T1],DT):-

integ(H0,H1,DT), integrate(T0,T1,DT).

integ(c(Id,X),c(Id,X),_).

integ(u(Id,_), u(Id,_),_).

integ(cv(Id,X,DX), cv(Id,X1,DX1),DT):- X1-X = (DX+DX1)/2*DT.

init([c(c1,-1),c(c2,-0.25),cv(x1,X1,0),cv(x2,_,_)]):-

X1 = 100; X1 = 150.

final([c(c1,C1),c(c2,C2),cv(x1,_,D_X1),cv(x2,_,F)],

F, (C1*D_X1+C2*F)).

final([c(c1,_),c(c2,_),cv(x1,F,D_F),cv(x2,_,_)],F,D_F).
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Table 54: End points of episodes of the oscillating system.

2 ?- tst(20).

x1: 20.8407 d: -83.363 x2: -83.363 d: 0

x1: 0 d: -80.7788 x2: -80.7788 d: 20.1947

x1: 31.2611 d: -125.044 x2: -125.044 d: 0

x1: 0 d: -121.168 x2: -121.168 d: 30.292

ably some simplifying assumptions and pre-analysis of the system equations
are needed to achieve reasonable efficiency.

Summary Analysis of an oscillating system reveals that considering only
the endpoints of an episode and the direction of change during an episode
results in quite vague predictions of the behaviour and in many superflu-
ous predictions. The predictions can be pruned with additional constraints.
However, it is also possible to apply numerical integration to determine the
consistent state transitions.
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8 DISCUSSION

Versatile solving of problems, many of which are quite abstract, is required
in industrial process plant control. Theoretically the problem to be solved
is to analyze/synthesize systems which are described partially with mathe-
matical equations and inequalities, partially with logic clauses. Appropriate
treatment of uncertainty is required so that it is not necessary to have highly
accurate models to achieve dependable results. The main interest is on dy-
namic properties of hybrid systems, i.e. on developing methods for systems
having both discrete-event and continuous-time dynamics.

Constraint logic programming language CLP(R) provides the ability to
handle both logic clauses and mathematical equations and inequalities. It
is only necessary to provide the solution mechanism for a certain type of
non-linear equations and equations which do not have analytic solutions.
This is done by programming explicit solutions for example for second order
equations and using Newton iteration when it is not appropriate or possible
to use explicit analytic solutions.

The full power of CLP(R) is not made use of. For example it is possible
to dump into a string all the constraints attached to a variable or all the
constraints in the model. This symbolic set of equations and inequalities can
be easily manipulated using the Prolog pattern matching.

Uncertainty is represented as numeric intervals. Often interval problems
are proposed to be solved iteratively applying some kind of local propagation.
In ISIR the minimum and maximum of each variable is searched globally
taking into account all the relevant equations simultaneously. The approach
gives correct results contrary to sometimes proposed local propagation which
may give only approximative results and sometimes even gives a result when
there actually is none. The models required are also simpler because it is
not necessary to use any interval operators when writing the models but
ordinary equations are sufficient. The implementation technique is typical
for constraint programming although may not have been applied before on
solving interval problems.

Prolog is an appropriate tool to deal with discrete-event systems. In qual-
itative simulation continuous behaviour is considered a sequence of episodes
separated by time points at which any of the derivatives of state variables
change sign. Thus, implementing this principle of qualitative simulation in
CLP(R) allows handling both discrete-event and continuous-time dynamics
in a unified way. The representation of the behaviour is on an abstraction
level required for example in designing discrete-event control systems.
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The basic idea of specifying continuous-time behaviour as a set of transi-
tion constraints is adopted from QSIM but because quantitative knowledge
is used it is possible to specify transitions directly from a time point to the
next one.

Being restricted only to quantitative knowledge when modelling continuous-
time systems has its pros and cons:

+ When a quantitative algorithm is constructed from the beginning it is
possible to make more efficient use of quantitative information. Thus,
many superfluous predictions can be avoided without missing any ac-
tual behaviours.

+ It is more straightforward to model systems where quantitative models
are necessary to get any useful results.

- In cases, where no quantitative knowledge is available, some quantita-
tive information must be invented. This may lead to misleading results.

+ Because numeric landmarks are used, they are automatically shared
among the state variables so that ordering of the landmarks of different
variables is made use of. This helps to filter out some superfluous
predictions. QSIM provides an option to specify the relative ordering
of the landmarks of some of the variables.

- The effect of shared landmarks is quite significant and it is introduced
implicitly. For example specification a > 0, b > 0, x > a, y < b tells
nothing about the sign of x− y. If then in one part of the specification
an assignment a = 5 is made and in a different part an assignment
b = 4.5 the sign of x− y is determined maybe unintentionally.

In ISIR the actual landmarks are typically intervals rather than single
values, but still the above applies.

- It is not possible to specify a relation like m+(X,Y) stating that Y is
a monotonously increasing function of X. All the relationships must
be represented as mathematical functions like for example y = k ∗
(x − x0), 1 ≤ k ≤ 1.5, 2 ≤ x0 ≤ 3. It is also possible to say that
f(x) ≤ y ≤ g(x) but f and g must be mathematical functions.

Inventing such functional relations with insufficient information on the
actual system is annoying and may result in misleading results.
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consists of programming, it is
computationally more be true.

8.1 FUTURE WORK

The ISIR-algorithm is a prototype for a kernel of a general problem solving
tool. As a kernel only it requires additional modules to become a practical
tool. In addition the previous examples indicate that there is need to im-
prove the prototype. The following is a brief discussion on some possible
improvements.

8.1.1 The basic algorithm

Complexity considerations Constraint logic programming provides ways
to reduce considerably the complexity of the computations compared to
brute-force approach. These methods are made use of in the ISIR-algorithm.
However, as a result it is impossible to estimate the complexity of the al-
gorithm, because the complexity of the computation depends heavily on the
system analyzed. Thus, the only way to estimate the complexity of practical
problems is testing. The examples handled in this report are not extensive
enough for this purpose.

No attention was paid on the complexity of the algorithm as long as
the exemplary problems could be solved in a few minutes in a PC having
a -486 25 MHZ processor and 16MB of core memory. So there is room for
improvements of the efficiency. Currently it seems that more attention should
be paid on space complexity than on time complexity.

It should be checked if any part of the basic algorithm introduces super-
fluous alternatives and thus causes unnecessary complexity. There are two
sources of possible unnecessary alternatives:

• The calls of the freeze-predicate are placed somewhat ad hoc in the
code. Careful reconsideration of freezing the calls of predicates might
reduce the complexity.

• There may be unnecessarily many alternatives especially in the predi-
cate which searches a point which satisfies given constraint equations
inside a region. The more different alternatives are tried out, the more
certain it is that a point is found when there is one. However, unnec-
essary alternatives heavily increase the complexity in cases when there
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is actually no solution. It should be straightforward to determine the
minimum necessary set of alternatives to guarantee correct solution.

There are at least three different ways to implement the numerical itera-
tions: Recursion with the variables instantiated, execution of the constraints
once with uninstantiated variables and then recursive modification of the
variables and finally use of backtracking instead of recursion. The complex-
ity of the alternatives should be evaluated and the best one implemented.

There are also alternative ways to implement the main body of the al-
gorithm. The space complexity of the alternatives should be evaluated. In
addition in the current version states are stored unnecessarily in two places.

Solution of non-linear and non-analytic constraints Non-linear con-
straints are treated with Newton iteration or with explicit solution formulas
in a somewhat ad hoc manner. Which numeric method is most appropriate
should be considered more carefully. There should be a more systematic way
to make use of numeric iteration.

The method of solving two-point boundary value problems should be
analyzed more carefully for accuracy.

Making use of existing numeric algorithms implemented in algorithmic
programming languages like C should be considered.

Quantitative Temporal Information, Numerical Integration The
basic ISIR-algorithm does not give any information on the duration of the
time intervals. In [?] Missier and Travé-Massuyès discuss the possibilities
to estimate the duration of time intervals in qualitative simulation. They
present a method based on the second order Taylor formula for cases where
some quantitative information on the system is available.

In Q3 discussed for example in [3] quantitative knowledge can be made
use of when it is available to estimate the duration of episodes.

It was shown earlier that the state transitions can be determined with
quantitative integration instead of the transition rules now used. This alter-
native should be implemented and the benefits, limitations and complications
should be discussed and demonstrated in more detail.

If continuous state transitions are solved with numeric integration the
temporal information can be obtained directly.

Hierarchical reasoning A large system model consists of a hierarchy of
modules where the modules often correspond to plant components and sub-
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systems. It might be possible to apply higher and lower level models in
reasoning. For example the state vector of a subsystem can be augmented
with an extra variable telling if that subsystem is in operation or not, or a
rough higher level model can be used to give rough limits for the values of
some of the main variables and their directions of change. This can often
reduce the search space a lot because there will be much less alternatives for
the low level detailed models.

The current implementation forces all the variables to be always instan-
tiated. In many cases only some of the variables are relevant. In principle it
is possible to recursively go through the state transitions for a certain num-
ber of times and then instantiate the known variables and finally dump out
the constraints attached to the interesting variables. This could reduce the
complexity.

Symbolic landmarks, qualitative relations ISIR is based on numeric
landmarks only to allow easy implementation. As table 55 shows the symbolic
computation needed in using symbolic landmarks can be implemented as a
separate module without major modification of the existing algorithm. Of
course implementation of such a module is a major effort.

Currently ISIR does not allow the use of qualitative relations like for
example mplus(y,x) requiring that y is a monotonously increasing function
of x. However, it is possible to define a predicate like mplus(Y,X) which
requires that the derivatives of X and Y have the same sign. Corresponding
values can be handled in the same way. Hence it is possible to include in
ISIR real qualitative simulation.

8.1.2 Describing the desired behaviour

The current version of ISIR can accomplish the low level tasks in action
planning and control system design. The user should be provided means
to specify the desired behaviour of the system to make it possible to solve
higher level problems autonomously. A part of this specification are opera-
tional restrictions, which can be given as constraints that every state much
satisfy. Operational restrictions can be specified easily in the ISIR framework.
The goal state of a sequence of operations is also easy to specify. However,
to be able to flexibly specify the desired behaviour it must be possible to
specify also other types of characteristics. Currently ISIR provides many dif-
ferent ways to characterise the desired behaviour, but they require detailed
knowledge of the implementation of ISIR.
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Table 55: Using symbolic landmarks does not prevent modelling with equa-
tions. However, a special module to process further the symbolic results is
needed.

symb_lm:-

% defining landmarks

0 < Hx, 0 < Hy, 0 < Hz,

% relations between landmarks

Hx < Hy,

Hx + Hy = Hz,

% values of X, Y and Z

0 < X, X < Hx,

Y > Hy,

0 < Z, Z < Hz,

% add-constraint

X + Y = Z,

dump([X,Hx]),

dump([Y,Hy]),

dump([Z,Hz]).

1 ?- symb_lm.

0 < Hx

0 < X

X < Hx

Hy < Y

Y < 2*Hy

0 < Hy

0 < Y + Hy

Z < Hz

0 < Z

0.5*Hz < Z

0 < Hz
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The functional requirements of the system can be represented as a hi-
erarchy of functions. Each function can be given preconditions which must
be true before the function is allowed to be initiated. Support conditions
tell what must be true during the execution of the function. Post-conditions
finally tell what should be true after the execution of the function. Every
function can be divided into a set of subfunctions. The lowest level func-
tions as well as pre-, support, and post-conditions would have one-to-one
correspondence with the system model.

8.1.3 Supporting the model generation

One of the motivations for developing ISIR is to help control system designers
to cope with the complexity of the design and help them to modify the control
system to reflect the changes in the design of the plant. To achieve this
modelling and remodelling of the plant should be fast and simple.

The principles of how to support modelling have been presented but no
general-purpose tool is implemented. Because databases of existing CAD-
tools should be used extensively a flexible interface should be provided.
Defining an intermediate language and providing transformation from it to
ISIR-models could be the best choice. The intermediate language should be
defined so that existing CAD-tools can easily produce models in it.

8.1.4 Applications

Qualitative reasoning and constraint logic programming provide many al-
ready implemented techniques and tools which can be applied on solving
real-life problems. However, much of the later research and development
seems to be triggered by difficulties encountered when trying to solve prac-
tical problems with the original principles of qualitative modelling. It seems
that the principles are sound but not sufficient for solving but a limited set
of practical problems. On the other hand for example the development of Q3
shows that the original principles of qualitative modelling can be successfully
complemented in many ways.

Much of the latest development has been made use of also when imple-
menting ISIR but the previous sections on future work reveal that there are
still many things to be tried out. Two mistakes can be made at this phase:

• A lot of time and resources will be spent on a universal stand-alone tool
with very sophisticated user-interface etc. There will be demonstrations
but the risk is that they are not selected to represent practical problems
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but the properties of the tool so that actually only very few real-life
problems can be solved with the tool.

• A particular real-life problem may be chosen to be solved with qualita-
tive modelling. A large complex problem requires a lot of routine work
leaving less time for the development of the generic techniques and tools
required for that type of problems. Instead, quick and dirty fixes are
made to get the tool work in time. Instead of achieving a generic tool
a messy procedure capable of solving only the very particular problem
is produced.

Thus, careful compromising is needed.
Because new challenges are rising and because qualitative reasoning is

becoming mature enough to meet those challenges, future research should be
directed towards solving practical problems. Problems on various restricted
domains not solvable with existing methods should be attacked.

• An area with practical significance and problems seemingly solvable by
qualitative reasoning should be selected.

• Qualitative reasoning and all the other techniques and tools should
be forgotten. Real-life problems never map one-to-one on theoretical
methods.

• The application area must be analyzed to give a formal representation
of the problems to be solved. The problems difficult to give formal
representation are also difficult to solve with computerised tools. The
man-machine interface should be somewhere in the region where the
problem formulation turns from formal to informal.

• The problems must be analyzed to choose the techniques to solve them.
To some extent different types of subproblems can be solved separately
with existing tools but major breakthroughs require tight integration of
different techniques. An example on such successful tight integration
is CLP(R), where resolution and linear programming are integrated
seamlessly.

• The software to solve the problems should be specified to the extent
that shows that the software is possible to implement and that allows
the estimation of the effort needed to implement it. Existing tools and
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proof-of-the-principle prototypes must be used to demonstrate possi-
ble implementations of the crucial and theoretically most demanding
parts30.

• In addition to using end-users when analyzing the problem domain also
demonstrating the principles of the planned solution to them might
fertilize ideas of new applications.

• The development of the tool must be considered a rapid prototyping
project, which requires careful consideration of the quality of the soft-
ware because there will be a lot of minor and major modifications of
the program. A high-level programming language which is used to im-
plement the software is often used also as an executable specification
language and the code itself must also often serve as its own documen-
tation. It should be easy for any experienced programmer to under-
stand and to modify the code. Configuration control requires special
attention when alternative solutions are tried out. Verification and
validation must also be paid special attention: When the product is
experiencing and on-going evolution, verification and validation must
also be an on-going process to reveal as soon as possible any deviations
from the requirements. At the same time verification and validation
should interfere with the development work as little as possible.

30The underlying objective of the development of the ISIR-tool has been to test and
demonstrate that the crucial parts of a tool to support design and verification of process
plant automatics can be implemented.

172



9 CONCLUSIONS

The difficulty to realize the full behaviour of complex systems causes errors in
control system design and plant operation especially in abnormal situations.
There are too many things that may occur and too many complex relation-
ships for a human mind to make the synthesis of them. The usefulness of
simulation is a good evidence of this, although simulation provides only one
kind of synthesis of the available knowledge.

The main potential benefits of computerised tools in tasks related to plant
control and operation are the improved efficiency, better coverage of differ-
ent situations and more dependable accomplishment of many routine tasks.
Functional design of control systems, action planning, fault diagnosis and
functional verification of control and monitoring systems are some potential
applications of knowledge-based tools.

Most of the knowledge required to accomplish such tasks can be obtained
from plant documentation and from general laws of physics and the knowl-
edge can be represented as a plant model. Such deep knowledge can be elic-
itated systematically, partially even automatically, and the knowledge-base
can be made comprehensible and thus easy to validate. Heuristics should be
minimised and used only when its effect on the solution is evident.

Making efficient use of computers in various tasks related to process plant
control and operation requires

• Versatile problem solving based on the plant model constructed from
mathematical equations and logic clauses.

Flexible problem solving is important because of the large variety of
the type of problems encountered. Deep knowledge and model-based
reasoning are the best way to construct a dependable system for flexi-
ble problem solving. The knowledge representation formalism must be
flexible enough to allow the use of both mathematical equations and
inequalities and clauses of first order logic.

• Proper handling of systems having both continuous and discrete dy-
namics.

There are both discrete and continuous control inputs and measure-
ments. Sometimes a part of the plant is convenient to model to have dis-
crete dynamics and some control functions are implemented as discrete-
event systems. But still significant parts of plants have continuous-time
dynamics.
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• Knowledge representation on an abstraction level higher than real-
valued functions.

One trajectory showing the step response is sufficient to tell the es-
sential properties of a feedback controller of a linear system. For non-
linear systems controlled with a discrete-event system this is not the
case. Usually a small number of trajectories would cover all the sig-
nificantly different cases, but those trajectories cannot be identified.
This is because the essential characteristics are represented on a higher
abstraction level.

• Proper handling of uncertainty and incompleteness.

Neither the plant models nor the operational requirements can be spec-
ified accurately and completely.

Many of the principles of qualitative simulation can be applied when im-
plementing model-based reasoning. The one directly visible is to represent
system behaviour as a (branching) sequence of episodes separated by signif-
icant time points. During an episode none of the derivatives of the system
state variables change sign. Significant time points mark instances at which
the derivatives change sign, some threshold value is exceeded, or some dis-
crete state variable gets a new value.

On the domain of industrial process plants numeric intervals are an appro-
priate knowledge representation type. Plant models, initial and goal states
etc. can be represented by giving the constants and the state variables values
which are intervals rather than single values. As a result plant behaviour is
represented as episodes characterised by upper and lower limits of the mag-
nitudes of the variables and by the signs of the first derivatives at initial and
final time. Such a representation is useful in many reasoning tasks.

Modern methods of knowledge-based systems have the necessary proper-
ties to implement a tool satisfying the above requirements. Logic program-
ming makes it possible to solve in practice many problems which — if tried to
be solved by procedural programming languages — result in an overwhelming
set of if-then-else clauses. Constraint logic programming languages — like
CLP(R) — extend logic programming to solving also mathematical equations
and inequalities.

The ISIR-algorithm developed in this work is a prototype kernel for model-
based reasoning used to develop and validate principles of model-based rea-
soning. Flexible use of model-based reasoning requires in addition comput-
erised support for model generation.
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ISIR shows that it is possible to achieve many significant properties of
qualitative reasoning even when using purely quantitative models of continuous-
time subprocesses. Allowing only quantitative knowledge restricts the do-
main of application but allows efficient use of numerical methods, which
improves the problem solving capabilities in that restricted domain.

There are two communities working on continuous time systems: those
representing traditional simulation and control engineering and those working
on artificial intelligence. Although they have different goals they still could
benefit from each other. Both communities have methods which the others
should know as well. AI community sometimes lacks the basic understanding
of continuous-time dynamic systems while they have fresh ideas on what kind
of problems will be encountered in the future.

In addition to the above the analysis and synthesis of discrete-event and
continuous-time dynamic systems are still very different worlds. The results
show that unifying these different approaches by implementing principles of
qualitative reasoning in constraint logic programming is possible.
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[20] J. Fox. Decision theory and autonomous systems. Decision Support Sys-
tems and Qualitative Reasoning. M.G. Singh and L. Trace-Massuyès
(eds.). Elsevier Science Publishers B.V. (North Holland). 1991.

[21] J. G. Gleary. Logical Arithmetic. Future Computing Systems, Vol. 2.
Number 2. 1987.

[22] Harel, D. Dynamic logic. In Handbook of Philosophical Logic, Volume
II: Extensions of Classical Logic, D. Gabbay and F. Guenthner, Eds.,
D. Reidel Publishing Company, Dordrecht, 1984, pp. 497–604.

[23] Heintze, N. Jaffar, J., Michaylov S., Stuckey S., Yap, R. The
CLP(R)Programmer’s Manual, Version 1.1., 1991. IBM Thomas J Wat-
son Research Center, PO Box 704, Yorktown Heights, NY 10598, U.S.A.

[24] IEC 848. Preparation of Function Charts for Control Systems, 1988.
International Electrotechnical Commission.

[25] J.R. James. Future of Intelligent Control Systems. Instrumentation,
Controls and Automation in Power Industry. Vol. 34 Proceedings of
the Thirty-Fourth Power Instrumentation Symposium, St. Petersburg
Beach, FL, USA, 3-5 June 1991.

[26] M.E. Janusz, V. Venkatasubramanian. Automatic Generation of Quali-
tative Descriptions of Process Trends for Fault Detection and Diagnosis.
Engineering Applications of Artificial Intelligence, Vol. 4, No. 5, 1991.

[27] A-E. Johansson, A. Eriksson-Granskog, A. Edman. En match med Pro-
log. Studentlitteratur, Lund, Sweden. (1985)

[28] H. Kay, B. Kuipers. Numerical Behaviour Envelopes for Qualitative
Models. June 1992.

177



[29] J. De Kleer, J. S. Brown. A Qualitative Physics Based on Confluences.
Artificial Intelligence 24, 1984.

[30] G. G. Koch. Modular Reasoning — A new Approach towards Intelligent
Control. Diss. ETH No. 10105. Swiss Federal Institute of Technology.
Zürich 1993.

[31] Kuipers, B. Qualitative Simulation. Artificial Intelligence, Vol. 29, pp.
289-338

[32] Kuipers, B. and Berleant D. Using incomplete quantitative knowledge in
Qualitative Reasoning. Proc. nat. Conf. on Artificial intelligence (AAAI-
88), 1988. Morgan Kaufmann, Los Altos, California.

[33] Kuipers, B. Qualitative Reasoning: Modelling and Simulation with In-
complete Knowledge. Automatica, Vol. 25, No. 4, 1989.

[34] B. Kuipers. Higher-order derivative constraints in qualitative simulation.
Artificial Intelligence 51 (1991). Elsevier.

[35] Catherine Lassez. Constraint Logic Programming. Byte, August 1987.

[36] Lee, W.W., Chiu, C. and Kuipers B. Developments Towards Constrain-
ing Qualitative Simulation. Ai TR87- 44 January 1987. Artificial Intel-
ligence Laboratory, The University of Texas at Austin.

[37] Leitch, R.R. Modelling of Complex Dynamic Systems. IEEE Proceed-
ings, Vol. 134, Pt. D, No. 4, July 1987.

[38] Nancy Leveson. The Challenge of Building Process-Control Software.
IEEE Software, November 1990.

[39] A.G.J. MacFarlane, G. Gruebel, J. Ackermann. Future Design environ-
ments for Control Engineering.
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A ABOUT PROLOG

The following is not a general introduction to Prolog, but it introduces the
features of Prolog which are necessary for reading this document.

A.1 VARIABLES

Prolog variables are strings starting with a capital letter. Other strings in the
program are atoms31. The variables in Prolog programs may be instantiated
or uninstantiated. An instantiated variable has obtained an atomic value,
while an uninstantiated one has not.

Table 56: An example of a Prolog relation introducing the use of variables.

f(1, one).

f(2, two).

f(_, too_big).

A ‘number-to-symbol’-conversion predicate f is de-
fined. 1, 2, one, two and too big are atoms (‘con-
stants’) and ‘ ’ is a special ‘dont́ care’-variable.

| ?- f(1,one).

yes

| ?- f(1,two).

no

f(X,Y) is true if X and Y are defined to be in relation
f, and false otherwise.

| ?- f(1,S).

S = one

| ?- f(N,two).

N = 2

Calling f(X,Y) also tells which values X and Y must
be assigned to satisfy the relation.

| ?- f(4,S).

S = too_big

| ?- f(N,four).

no

too big is in relation with ‘ ’, i.e it is in relation with
anything. On the contrary four is not defined to be
in relation f at all.

Table 56 is an example on defining the relation between numbers and
corresponding strings. Queries can be made to find out if certain atoms are in

31In these examples it is like that. The Prolog syntax allows some other strings to be
variables as well
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the relation. If there are variables in the queries, it is checked, if the variables
can be replaced by some atoms so that they satisfy the relation. Note that
there is neither input nor output: Prolog predicates define relations, not
functions.

Prolog is an untyped language. Thus, with the same member-predicate it
is possible to check if 3 ∈ {1, 2, 3, 4, 5} and if pair(a,D) ∈ {pair(x,y), pair(b,c),
pair(a,b)}. In CLP(R) some distinction must be made between numeric vari-
ables and others. In addition in CLP(R) it is possible to have partially con-
strained numeric variables.

There are meta-level predicates which tell if the variable is instantiated
or not. In programming they are needed only when making some special
constructions. Table 57 demonstrates the instantiation of the variables and
applies such meta-level predicates.

A.2 FACTS AND RELATIONS

Facts and relations can be defined as in Table 58. mother(Mother, Child)

tells a relation between two persons.
The relations can be connected to one another. The program in Table

59 can be interpreted roughly as “if there are X, Y and Z so that X is Y’s
mother and Y is Z’s mother then X is Z’s grandmother”. The second line
introduces another alternative for X being Z’s grandmother.

[8] demonstrates Prolog with some examples on digital circuits. Fig. 45
shows XOR-function implemented with nand-circuits. Nand-circuit and xor-
function can be specified in Prolog. Then, it can be searched for example
what the output for given input values is, what the other input must be if
the other input is known and the desired output is given, or which inputs
give a given desired output as shown in Table 60.

Figure 45: The XOR function implemented with nand-gates.
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Table 57: Applying meta-level predicates to tell instantiated from uninstanti-
ated variables.

pr(X):- ground(X),

printf(’% is ground\n’,[X]).

pr(X):- arithmetic(X),

dump([X],[x],C),

printf(’% is an arithmetic term constrained by %\n’,[X,C]).

pr(X):- functor(X),

printf(’% is an ungrounded construct\n’,[X]).

pr(X):- printf(’% is unconstrained\n’,[X]).

1 ?- pr(X), X < 5, pr(X), X > 0, pr(X), X = 3, pr(X).

_h1 is unconstrained

_t1 is an arithmetic term constrained by [x < 5]

_t1 is an arithmetic term constrained by [^-(x) < 0, x < 5]

3 is ground

2 ?- pr(X), X = pair(A,B), pr(X), B = b, pr(X), A = a ,pr(X).

_h1 is unconstrained

pair(_h4, _h5) is an ungrounded construct

pair(_h4, b) is an ungrounded construct

pair(a, b) is ground
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Table 58: Describing family relations.

mother(eeva,maija).

mother(eeva,kaisa).

mother(kaisa,anni).

mother(kaisa,riikka).

mother(maija,annastiina).

mother(maija,ilona).

mother(liisa,heikki).

mother(helka,jussi).

mother(helka,olli).

father(olli,monna).

Table 59: Combining the basic family relations

grand_mother(X,Z):- mother(X,Y), mother(Y,Z).

grand_mother(X,Z):- mother(X,Y), father(Y,Z).

parent(A,B):- mother(A,B).

parent(A,B):- father(A,B).

cousin(A,B):-

dif(X,Y),

parent(X,A), parent(Z,X),

parent(Z,Y), parent(Y,B).
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Table 60: Logic circuits in Prolog.

nand(0,0,1).

nand(0,1,1).

nand(1,0,1).

nand(1,1,0).

xor(X,Y,Z):-

nand(X,Y,A),

nand(X,A,B),

nand(Y,A,C),

nand(B,C,Z).

| ?- xor(0,1,X).

X = 1 ? ;

no

| ?- xor(X,0,Y).

X = 0, Y = 0 ? ;

X = 1, Y = 1 ? ;

no

| ?- xor(X,Y,1).

X = 0, Y = 1 ? ;

X = 1, Y = 0 ? ;

no

A.3 BACKTRACKING

Backtracking is central for Prolog execution. Prolog interpreter uses it to
find a fact or a relation that satisfies the goal. Table 61 shows a trace of
execution of a Prolog program with a lot of backtracking. When a goal fails,
a previous goal is checked for any alternatives. This is done until a goal with
untried alternatives is found. Such a goal is redone and the execution then
proceedes forward.

A.4 RECURSION AND LISTS

Items separated with commas and included in brackets form a Prolog list,
which can be considered as an ordered set.

Recursion is commonly used in Prolog programs, the member-predicate in
Table 62 being a typical example. [H|T] stands for a list whose first item is
H, and T is the rest of the list. X is a member of the list if it is equal to the
first item in the list or if it is a member of the rest of the list.

In Fig. 46 there is a divide-by-2 frequency divider taken from the example
in [8]. Because it is an example of sequential logic it can be used to illustrate
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Table 61: Trace of prolog backtracking.

backtracking:-

mother(Mother,Child),

Child = jussi.

?- backtracking.

1 1 Call: backtracking

2 2 Call: mother(_177,_178)

2 2 Exit: mother(eeva,maija)

3 2 Call: maija=jussi

3 2 Fail: maija=jussi

2 2 Redo: mother(eeva,maija)

2 2 Exit: mother(eeva,kaisa)

3 2 Call: kaisa=jussi

3 2 Fail: kaisa=jussi

2 2 Redo: mother(eeva,kaisa)

2 2 Exit: mother(kaisa,anni)

3 2 Call: anni=jussi

3 2 Fail: anni=jussi

2 2 Redo: mother(kaisa,anni)

2 2 Exit: mother(kaisa,riikka)

3 2 Call: riikka=jussi

3 2 Fail: riikka=jussi

2 2 Redo: mother(kaisa,riikka)

2 2 Exit: mother(maija,annastiina)

3 2 Call: annastiina=jussi

3 2 Fail: annastiina=jussi

2 2 Redo: mother(maija,annastiina)

2 2 Exit: mother(maija,ilona)

3 2 Call: ilona=jussi

3 2 Fail: ilona=jussi

2 2 Redo: mother(maija,ilona)

2 2 Exit: mother(liisa,heikki)

3 2 Call: heikki=jussi

3 2 Fail: heikki=jussi

2 2 Redo: mother(liisa,heikki)

2 2 Exit: mother(helka,jussi)

3 2 Call: jussi=jussi

3 2 Exit: jussi=jussi

1 1 Exit: backtracking

Figure 46: A divide-by-2 frequency divider.
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Table 62: The memberships-relation.

| ?- [a,b,c,d,e,f] = [H|T].

H = a,

T = [b,c,d,e,f]

member(X,[X|_]).

member(X,[_|T]):-

member(X,T).

| ?- member(e,[a,b,c,d,e,f]).

yes

| ?- member(c,[a,b,e,f,h]).

no

| ?- member(X,[a,b,c]).

X = a ? ;

X = b ? ;

X = c ? ;

| ?- member(a,X).

X = [a|_72] ? ;

X = [_71,a|_78] ? ;

X = [_71,_77,a|_84] ?

the use of Prolog in analyzing dynamic systems. The divider is constructed
of a flip-flop and an inverter. The next state Q next of the flip-flop depends
on the current state Q and the data input D. The flip-flop is triggered by
(rising edge of) the signal C. The input sequence is represented as a list of 1’s
and 0’s. Predicate div in Table 63 specifies the circuit and predicate divide
is used to ‘simulate’ the circuit. It recurs through the input list and produces
the corresponding output list.

A.5 OTHER STRUCTURES - A BINARY TREE

Different structures can be represented as Prolog facts. For example a binary
tree can be specified as a set of relations between a node and its left and right
subtree as node(Node,Left, Right).

‘Generate-and-fail’ approach can be applied for example when Prolog is
used in writing programs. Prolog first tries one of the alternatives and if it
fails it backtracks to the previous point where there are other alternatives
and chooses the next alternative. Using ‘fail’-predicate appropriately makes
all the alternatives fail at the end thus forcing Prolog to try out all of them.
Table 64 shows a generate-and-fail program to visit the nodes of a binary
tree.

Because the predicate in Table 64 finally always fails, only its side-effects
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Table 63: Specification of a divide-by-2 circuit.

inv(0,1).

inv(1,0).

% dff(D,C,Q,Q_next).

dff(1,0,1,1).

dff(1,0,0,0).

dff(0,0,1,1).

dff(0,0,0,0).

dff(1,1,1,1).

dff(1,1,0,1).

dff(0,1,1,0).

dff(0,1,0,0).

div(X,Q,Y):-

inv(Q,D), dff(D,X,Q,Y).

divide([],Q,[]).

divide([X|Xs],Q,[Y|Ys]):-

div(X,Q,Y),

divide(Xs,Y,Ys).

| ?- divide([1,1,1,1,1,1],0,Y).

Y = [1,0,1,0,1,0]

| ?- divide([0,1,0,0,1,1,0,0],0,Y).

Y = [0,1,1,1,0,1,1,1]

Figure 47: node(root,5,nil). node(5,2,7). node(2,1,3). node(3,nil,4).
node(7,6,8).
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— in this case the text written on the terminal or in a file — can be made
use of. The only reason to make a program like that is that it is easy to code
and efficient to run.

In this case a more general program is as simple to code, see Table 65.

Table 64: Visiting a binary tree with a generate-and-fail algorithm.

tree_visit1(Node):- % 1. alternative

format(’ tree(~w’,[Node]), % write out the root

node(Node,Left,Right),

tree_visit1(Left). % visit the left subtree

tree_visit1(Node):- % 2. alternative

node(Node,Left,Right),

tree_visit1(Right). % visit the right subtree

tree_visit1(Node):- % 3. alternative

write(’)’),

fail.

The output is the following:

| ?- tree_visit1(root).

tree(root tree(5 tree(2 tree(1) tree(3 tree(nil) tree(4)))

tree(7 tree(6) tree(8))) tree(nil))

no

A.6 THE ‘CUT’

The ‘cut’, ‘!’ causes many complications and should be used with special
care. ‘cut’ prevents Prolog from trying other alternatives after one of the al-
ternatives has succeeded. Table 66 shows the behaviour of the same program
with and without the cut.
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Table 65: Visiting a binary tree with a recursive algorithm.

tree_visit2(Node,tree(Node,LTree,RTree)):-

node(Node,Left,Right),

tree_visit2(Left,LTree),

tree_visit2(Right,RTree).

tree_visit2(Node,Node).

Giving the result as an argument.

| ?- tree_visit2(root,Tree).

Tree =

tree(root,tree(5,tree(2,1,tree(3,nil,4)),tree(7,6,8)),nil) ?

yes

| ?-

A.7 METALOGICAL FEATURES

Metalogical features cannot be represented with predicate logic contrary to
basic Prolog constructs. The ‘cut’ is a metalogical feature. All side-effects
are also metalogical features. One of the ways to produce side-effects is
to use assert- and retract-commands. After assert(p(a,b))-command
calling p(a,b) succeeds, i.e. the predicate p(a,b) is added into the program.
retract(p(a,b)) removes the predicate p(a,b). assert and retract can
be used to pass parameters outside the parameter lists or even to modify the
program during execution, which must be avoided.

However, assert and retract can also be used to integrate a data-base
in a Prolog program. If assert and retract are used only in modifying a
data-base separate from the program body, then their use is acceptable.

In the ISIR-algorithm assert is used to only one purpose, to implement a
sort of ‘findall’ predicate shown in Table 67. X = {ab(A,B)|a(A), b(B), 0 <
A + B < 5} can be determined by the program in Table 67. Some dialects
of Prolog have a findall command which does the same job as the above
program, see Table 68.
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Table 66: The effect of the cut.

All the alternatives:
f(1,one).

f(2,two).

f(3,three).

f(_,too_big).

| ?- f(1,X).

X = one ? ;

X = too_big ? ;

no

| ?- f(4,X).

X = too_big ? ;

no

The cut used to prevent backtracking:

g(1,one):- !.

g(2,two):- !.

g(3,three):- !.

g(_,too_big).

| ?- g(1,X).

X = one ? ;

no

| ?- g(4,X).

X = too_big ? ;

no
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Table 67: Implementation of a findall predicate.

a(0). a(1). a(-5). a(3).

b(0). b(3). b(5). b(-3).

limit:-

retractall(ab(_,_)), % clean up

a(A), b(B),

Z is A+B,

0 < Z, Z < 5, % inside the limits

assert(ab(A,B)), % memorise

fail. % force backtracking for other

% alternatives

Now all the acceptable ab(A,B) are asserted.

| ?- limit.

no

| ?- ab(A,B).

A = 0, B = 3 ? ;

A = 1, B = 0 ? ;

A = 1, B = 3 ? ;

A = 3, B = 0 ? ;

no

| ?-
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Table 68: Using the built-in findall predicate.

all(X):- findall(ab(A,B),limit(A,B),X).

limit(A,B):-

a(A), b(B),

Z is A+B,

0 < Z, Z < 5.

| ?- all(X).

X = [ab(0,3),ab(1,0),ab(1,3),ab(3,0)] ?

A.8 CONSTRAINT LOGIC PROGRAMMING

Constraint logic programming can be seen as an extension of Prolog. The
Prolog interpreter tries out the different alternatives provided by the program
to find for the variables such a combination of values which satisfies the goal.
In ordinary Prolog it is not possible to state that two uninstantiated variables
must be instantiated to different values. Thus, for example the testing of
inequality must be accomplished only after the variables get instantiated.
Prolog-II provides a diff-predicate, which handles properly this problem. In
constraint logic programming it is possible to constrain the allowable set of
instantiations of a variable more generally in advance.

Constraint logic programming languages like Prolog-III and CLP(R) allow
the use of mathematical equations and inequalities as constraints. [23] gives
examples on CLP(R), see Table 69.

In [35] Lassez demonstrates CLP(R). The task is to connect two resistors
(R1 and R2) in Fig. 48 in series with a cell (V) so that the voltage over
R2 is 14.5 < VR2 < 16.5 The available resistors are 10Ω, 14Ω, 27Ω and 60Ω
and the available cells 10V and 20V. The solution to the problem is shown
in Table 70.
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Table 69: Analyzing Fibonnacci numbers with CLP(R).

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2) :-

N > 1,

fib(N - 1, X1),

fib(N - 2, X2).

4 ?- fib(14,F).

F = 610

5 ?- fib(N,610).

N = 14

6 ?- F > 7, F < 9, fib(N,F).

N = 5, F = 8

Figure 48: Choosing the resistors.
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Table 70: Choosing components for the circuit in Fig. 48

ohmlaw(V, I, R):-

V = I * R.

kirchoff(L):-

sum(L, 0).

sum([], 0).

sum([H | T], N):-

H + M = N,

sum(T, M).

availres(10).

availres(14).

availres(27).

availres(60).

availres(100).

availcell(10).

availcell(20).

2 ?- 14.5 < V2, V2 < 16.25, availres(R1), availres(R2),

availcell(V), ohmlaw(V1,I1,R1), ohmlaw(V2,I2,R2),

kirchoff([I1,-I2]), kirchoff([-V,V1,V2]).

I2 = 0.54054

I1 = 0.54054

V1 = 5.4054

V = 20

R2 = 27

R1 = 10

V2 = 14.5946

*** Retry? y

I2 = 0.27027

I1 = 0.27027

V1 = 3.78378

V = 20

R2 = 60

R1 = 14

V2 = 16.2162

*** Retry? y

I2 = 0.15748

I1 = 0.15748

V1 = 4.25197

V = 20

R2 = 100

R1 = 27

V2 = 15.748

195


	INTRODUCTION
	CONTENTS OF THIS REPORT
	CONTROLLING PROCESS PLANTS
	DISCRETE-EVENT CONTROL
	Designing discrete-event control

	SOFTWARE ENGINEERING
	KNOWLEDGE-BASED SYSTEMS
	COMPUTER-AIDED DESIGN AND DECISION MAKING
	Decision support


	CONTROLLING DYNAMIC SYSTEMS
	CHANGING REQUIREMENTS ON PLANT CONTROL
	METHODS FOR ANALYSIS AND DESIGN OF DYNAMIC SYSTEMS
	QUALITATIVE REASONING
	Summary

	REPRESENTING PLANT KNOWLEDGE
	Representing plant state
	Representing dynamic behaviour
	Behaviour of a simple dynamic system


	CONSTRAINT LOGIC PROGRAMMING
	SEMANTICS OF THE LANGUAGE
	SOME CORRECTNESS CHECKS OF CONSTRAINT LOGIC PROGRAMS
	REACHABILITY GRAPH OF A DISCRETE-EVENT SYSTEM 
	Summary
	Correctness proof of the reachability graph generation

	APPLYING CONSTRAINT EQUATIONS
	Structural reasoning
	Solving systems of nonlinear equations

	FREEZING UNINSTANTIATED CONSTRAINTS
	SOLVING INTERVAL CONSTRAINT PROBLEMS
	CONSTRAINED OPTIMIZATION
	Proof of the constrained optimization


	THE ISIR-ALGORITHM
	ISIR-ALGORITHM IN SHORT
	DISCRETE-EVENT CONTROL OF A CONTINUOUS-TIME PROCESS
	Analysis of the reachability graph
	Synthesis of a control sequence
	Control requirements specified with a state automaton
	Proportional control of the tank level

	SUBTASKS IN MODEL-BASED REASONING
	Consistent states
	Consistent change of continuous functions
	Consistent state transitions
	Consistent behaviours
	Planning
	Verification

	HIGHER ORDER DERIVATIVES
	ADDITIONAL FEATURES
	Quantitative integration
	Support for the modelling of large systems
	Support for the modelling of automatics

	CHARACTERISTICS OF THE ISIR-ALGORITHM

	A POWER PLANT FEEDWATER SYSTEM
	HEAT EXCHANGERS
	Saturated steam in a drum
	Heat flow through a heat exchanger wall

	A FEEDWATER SYSTEM
	Discussion

	A CONTINUOUS STIRRED TANK REACTOR
	OSCILLATING SYSTEMS
	EMPLOYING NUMERICAL INTEGRATION

	DISCUSSION
	FUTURE WORK
	The basic algorithm
	Describing the desired behaviour
	Supporting the model generation
	Applications


	CONCLUSIONS
	ABOUT PROLOG
	VARIABLES
	FACTS AND RELATIONS
	BACKTRACKING
	RECURSION AND LISTS
	OTHER STRUCTURES - A BINARY TREE
	THE `CUT'
	METALOGICAL FEATURES
	CONSTRAINT LOGIC PROGRAMMING


